Skip to main content

Advertisement

Log in

Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Remodeling of the intracellular cytoskeleton plays a key role in accelerating tumor growth and metastasis. Targeting different cytoskeletal elements is important for existing and future anticancer therapies. Anillin is a unique scaffolding protein that interacts with major cytoskeletal structures, e.g., actin filaments, microtubules and septin polymers. A well-studied function of this scaffolding protein is the regulation of cytokinesis at the completion of cell division. Emerging evidence suggest that anillin has other important activities in non-dividing cells, including control of intercellular adhesions and cell motility. Anillin is markedly overexpressed in different solid cancers and its high expression is commonly associated with poor prognosis of patient survival. This review article summarizes rapidly accumulating evidence that implicates anillin in the regulation of tumor growth and metastasis. We focus on molecular and cellular mechanisms of anillin-dependent tumorigenesis that include both canonical control of cytokinesis and novel poorly understood functions as a nuclear regulator of the transcriptional reprogramming and phenotypic plasticity of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Adapted from [11, 13])

Fig. 2

Similar content being viewed by others

References

  1. Akhshi TK, Wernike D, Piekny A (2014) Microtubules and actin crosstalk in cell migration and division. Cytoskeleton 71:1–23. https://doi.org/10.1002/cm.21150

    Article  CAS  PubMed  Google Scholar 

  2. Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523. https://doi.org/10.1111/bph.12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang P, Enomoto A, Takahashi M (2009) Cell biology of the movement of breast cancer cells: intracellular signalling and the actin cytoskeleton. Cancer Lett 284:122–130. https://doi.org/10.1016/j.canlet.2009.02.034

    Article  CAS  PubMed  Google Scholar 

  4. Sagona AP, Stenmark H (2010) Cytokinesis and cancer. FEBS Lett 584:2652–2661. https://doi.org/10.1016/j.febslet.2010.03.044

    Article  CAS  PubMed  Google Scholar 

  5. Hohmann T, Dehghani F (2019) The cytoskeleton-A complex interacting meshwork. Cells 8:E362. https://doi.org/10.3390/cells8040362

    Article  CAS  PubMed  Google Scholar 

  6. Spiliotis ET, Nelson WJ (2006) Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119:4–10. https://doi.org/10.1242/jcs.02746

    Article  CAS  PubMed  Google Scholar 

  7. Pous C, Klipfel L, Baillet A (2016) Cancer-related functions and subcellular localizations of septins. Front Cell Dev Biol 4:126. https://doi.org/10.3389/fcell.2016.00126

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130. https://doi.org/10.1016/s0955-0674(98)80095-1

    Article  CAS  PubMed  Google Scholar 

  9. Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RY et al (2020) Cytoskeletal proteins in cancer and intracellular stress: a therapeutic perspective. Cancers 12:E238. https://doi.org/10.3390/cancers12010238

    Article  CAS  PubMed  Google Scholar 

  10. Miller KG, Field CM, Alberts BM (1989) Actin-binding proteins from Drosophila embryos: a complex network of interacting proteins detected by F-actin affinity chromatography. J Cell Biol 109:2963–2975. https://doi.org/10.1083/jcb.109.6.2963

    Article  CAS  PubMed  Google Scholar 

  11. D’Avino PP (2009) How to scaffold the contractile ring for a safe cytokinesis–lessons from Anillin-related proteins. J Cell Sci 122:1071–1079. https://doi.org/10.1242/jcs.034785

    Article  CAS  PubMed  Google Scholar 

  12. Hall PA, Todd CB, Hyland PL, McDade SS, Grabsch H, Hillan KJ et al (2005) The septin-binding protein anillin is overexpressed in diverse human tumors. Clin Cancer Res 11:6780–6786. https://doi.org/10.1158/1078-0432.ccr-05-0997

    Article  CAS  PubMed  Google Scholar 

  13. Piekny AJ, Maddox AS (2010) The myriad roles of anillin during cytokinesis. Semin Cell Dev Biol 21:881–891. https://doi.org/10.1016/j.semcdb.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Chadha GK, Feygin A, Ivanov AI (2015) F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 72:3185–3200. https://doi.org/10.1007/s00018-015-1890-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Naydenov NG, Dozmorov MG, Koblinski JE, Ivanov AI (2020) Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Res 22:3. https://doi.org/10.1186/s13058-019-1241-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36. https://doi.org/10.1016/j.cub.2007.11.068

    Article  CAS  PubMed  Google Scholar 

  17. Oegema K, Savoian MS, Mitchison TJ, Field CM (2000) Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 150:539–552. https://doi.org/10.1083/jcb.150.3.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jananji S, Risi C, Lindamulage IKS, Picard LP, Van Sciver R, Laflamme G et al (2017) Multimodal and polymorphic interactions between anillin and actin: their implications for cytokinesis. J Mol Biol 429:715–731. https://doi.org/10.1016/j.jmb.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Matsuda K, Sugawa M, Yamagishi M, Kodera N, Yajima J (2020) Visualizing dynamic actin cross-linking processes driven by the actin-binding protein anillin. FEBS Lett 594:1237–1247. https://doi.org/10.1002/1873-3468.13720

    Article  CAS  PubMed  Google Scholar 

  20. Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201. https://doi.org/10.1091/mbc.e04-08-0758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao WM, Fang G (2005) Anillin is a substrate of anaphase-promoting complex/cyclosome (APC/C) that controls spatial contractility of myosin during late cytokinesis. J Biol Chem 280:33516–33524. https://doi.org/10.1074/jbc.m504657200

    Article  CAS  PubMed  Google Scholar 

  22. Chen A, Arora PD, McCulloch CA, Wilde A (2017) Cytokinesis requires localized beta-actin filament production by an actin isoform specific nucleator. Nat Commun 8:1530. https://doi.org/10.1038/s41467-017-01231-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe S, Okawa K, Miki T, Sakamoto S, Morinaga T, Segawa K et al (2010) Rho and anillin-dependent control of mDia2 localization and function in cytokinesis. Mol Biol Cell 21:3193–3204. https://doi.org/10.1091/mbc.e10-04-0324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haglund K, Nezis IP, Lemus D, Grabbe C, Wesche J, Liestol K et al (2010) Cindr interacts with anillin to control cytokinesis in Drosophila melanogaster. Curr Biol 20:944–950. https://doi.org/10.1016/j.cub.2010.03.068

    Article  CAS  PubMed  Google Scholar 

  25. Monzo P, Gauthier NC, Keslair F, Loubat A, Field CM, Le Marchand-Brustel Y et al (2005) Clues to CD2-associated protein involvement in cytokinesis. Mol Biol Cell 16:2891–2902. https://doi.org/10.1091/mbc.e04-09-0773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J et al (2014) Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 25:1991–2002. https://doi.org/10.1681/asn.2013090976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH et al (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300:1298–1300. https://doi.org/10.1126/science.1081068

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Guan R, Lee IJ, Liu Y, Chen M, Wang J et al (2015) Mechanistic insights into the anchorage of the contractile ring by anillin and Mid1. Dev Cell 33:413–426. https://doi.org/10.1016/j.devcel.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A (2012) An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS ONE 7:e34888. https://doi.org/10.1371/journal.pone.0034888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manukyan A, Ludwig K, Sanchez-Manchinelly S, Parsons SJ, Stukenberg PT (2015) A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J Cell Sci 128:50–60. https://doi.org/10.1242/jcs.151647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Oostende Triplet C, Jaramillo Garcia M, Haji Bik H, Beaudet D, Piekny A (2014) Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J Cell Sci 127:3699–3710. https://doi.org/10.1242/jcs.147504

    Article  CAS  Google Scholar 

  32. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self-and actin-templated assembly of mammalian septins. Dev Cell 3:791–802. https://doi.org/10.1016/s1534-5807(02)00366-0

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Fairn GD, Ceccarelli DF, Sicheri F, Wilde A (2012) Cleavage furrow organization requires PIP(2)-mediated recruitment of anillin. Curr Biol 22:64–69. https://doi.org/10.1016/j.cub.2011.11.040

    Article  CAS  PubMed  Google Scholar 

  34. El-Amine N, Carim SC, Wernike D, Hickson GRX (2019) Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation. Mol Biol Cell 30:2185–2204. https://doi.org/10.1091/mbc.e19-04-0194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gai M, Camera P, Dema A, Bianchi F, Berto G, Scarpa E et al (2011) Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 22:3768–3778. https://doi.org/10.1091/mbc.e10-12-0952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adachi M, Kawasaki A, Nojima H, Nishida E, Tsukita S (2014) Involvement of IQGAP family proteins in the regulation of mammalian cell cytokinesis. Genes Cells 19:803–820. https://doi.org/10.1111/gtc.12179

    Article  CAS  PubMed  Google Scholar 

  37. D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED et al (2008) Interaction between anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121:1151–1158. https://doi.org/10.1242/jcs.026716

    Article  CAS  PubMed  Google Scholar 

  38. Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R (2008) Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol 18:25–29. https://doi.org/10.1016/j.cub.2007.11.050

    Article  CAS  PubMed  Google Scholar 

  39. Takeda T, Robinson IM, Savoian MM, Griffiths JR, Whetton AD, McMahon HT et al (2013) Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis. Open Biol 3:130081. https://doi.org/10.1098/rsob.130081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178. https://doi.org/10.1083/jcb.131.1.165

    Article  CAS  PubMed  Google Scholar 

  41. Chen A, Akhshi TK, Lavoie BD, Wilde A (2015) Importin beta2 mediates the Spatio-temporal regulation of anillin through a noncanonical nuclear localization signal. J Biol Chem 290:13500–13509. https://doi.org/10.1074/jbc.m115.649160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gould GW (2016) Animal cell cytokinesis: the role of dynamic changes in the plasma membrane proteome and lipidome. Semin Cell Dev Biol 53:64–73. https://doi.org/10.1016/j.semcdb.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Hickson GR, O’Farrell PH (2008) Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans 36:439–441. https://doi.org/10.1042/bst0360439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuan NM, Lee CH (2020) Role of anillin in tumour: from a prognostic biomarker to a novel target. Cancers 12:E1600. https://doi.org/10.3390/cancers12061600

    Article  CAS  PubMed  Google Scholar 

  45. Echard A, Hickson GR, Foley E, O’Farrell PH (2004) Terminal cytokinesis events uncovered after an RNAi screen. Curr Biol 14:1685–1693. https://doi.org/10.1016/j.cub.2004.08.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hickson GR, O’Farrell PH (2008) Rho-dependent control of anillin behavior during cytokinesis. J Cell Biol 180:285–294. https://doi.org/10.1083/jcb.200709005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612. https://doi.org/10.1016/j.yjmcc.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  48. Budnar S, Husain KB, Gomez GA, Naghibosadat M, Varma A, Verma S et al (2019) Anillin promotes cell contractility by cyclic resetting of RhoA residence kinetics. Dev Cell 49:894–906. https://doi.org/10.1016/j.devcel.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  49. Arnold TR, Shawky JH, Stephenson RE, Dinshaw KM, Higashi T, Huq F et al (2019) Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network. eLife 8:e39065. https://doi.org/10.7554/elife.39065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reyes CC, Jin M, Breznau EB, Espino R, Delgado-Gonzalo R, Goryachev AB et al (2014) Anillin regulates cell-cell junction integrity by organizing junctional accumulation of Rho-GTP and actomyosin. Curr Biol 24:1263–1270. https://doi.org/10.1016/j.cub.2014.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hall G, Lane BM, Khan K, Pediaditakis I, Xiao J, Wu G et al (2018) The human FSGS-causing ANLN R431C mutation induces dysregulated PI3K/AKT/mTOR/Rac1 signaling in podocytes. J Am Soc Nephrol 29:2110–2122. https://doi.org/10.1681/asn.2017121338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian D, Diao M, Jiang Y, Sun L, Zhang Y, Chen Z et al (2015) Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton. Curr Biol 25:1135–1145. https://doi.org/10.1016/j.cub.2015.02.072

    Article  CAS  PubMed  Google Scholar 

  53. Erwig MS, Patzig J, Steyer AM, Dibaj P, Heilmann M, Heilmann I et al (2019) Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. eLife 8:e33888. https://doi.org/10.7554/elife.43888

    Article  CAS  Google Scholar 

  54. Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Mobius W et al (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife 5:e17119. https://doi.org/10.7554/elife.17119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979. https://doi.org/10.1073/pnas.0931261100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Danielsson F, Skogs M, Huss M, Rexhepaj E, O’Hurley G, Klevebring D et al (2013) Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model. Proc Natl Acad Sci USA 110:6853–6858. https://doi.org/10.1073/pnas.1216436110

    Article  PubMed  PubMed Central  Google Scholar 

  57. Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T et al (2017) Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma. Oncotarget 8:53180–53193. https://doi.org/10.18632/oncotarget.18261

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lian YF, Huang YL, Wang JL, Deng MH, Xia TL, Zeng MS et al (2018) Anillin is required for tumor growth and regulated by miR-15a/miR-16-1 in HBV-related hepatocellular carcinoma. Aging 10:1884–1901. https://doi.org/10.18632/aging.101510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang PI, Chen WT, Li CF, Li CC, Li WM, Huang CN et al (2015) Subcellular localisation of anillin is associated with different survival outcomes in upper urinary tract urothelial carcinoma. J Clin Pathol 68:1026–1032. https://doi.org/10.1136/jclinpath-2015-202958

    Article  CAS  PubMed  Google Scholar 

  60. Long X, Zhou W, Wang Y, Liu S (2018) Prognostic significance of ANLN in lung adenocarcinoma. Oncol Lett 16:1835–1840. https://doi.org/10.3892/ol.2018.8858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Magnusson K, Gremel G, Ryden L, Ponten V, Uhlen M, Dimberg A et al (2016) ANLN is a prognostic biomarker independent of Ki-67 and essential for cell cycle progression in primary breast cancer. BMC Cancer 16:904. https://doi.org/10.1186/s12885-016-2923-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olakowski M, Tyszkiewicz T, Jarzab M, Krol R, Oczko-Wojciechowska M, Kowalska M et al (2009) NBL1 and anillin (ANLN) genes over-expression in pancreatic carcinoma. Folia Histochem Cytobiol 47:249–255. https://doi.org/10.2478/v10042-009-0031-1

    Article  PubMed  Google Scholar 

  63. Pandi NS, Manimuthu M, Harunipriya P, Murugesan M, Asha GV, Rajendran S (2014) In silico analysis of expression pattern of a Wnt/beta-catenin responsive gene ANLN in gastric cancer. Gene 545:23–29. https://doi.org/10.1016/j.gene.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T et al (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325. https://doi.org/10.1158/0008-5472.can-05-1507

    Article  CAS  PubMed  Google Scholar 

  65. Wang A, Dai H, Gong Y, Zhang C, Shu J, Luo Y et al (2019) ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J Exp Clin Cancer Res 38:347. https://doi.org/10.1186/s13046-019-1340-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang G, Shen W, Cui L, Chen W, Hu X, Fu J (2016) Overexpression of Anillin (ANLN) is correlated with colorectal cancer progression and poor prognosis. Cancer Biomark 16:459–465. https://doi.org/10.3233/cbm-160585

    Article  CAS  PubMed  Google Scholar 

  67. Wang Z, Chen J, Zhong MZ, Huang J, Hu YP, Feng DY et al (2017) Overexpression of ANLN contributed to poor prognosis of anthracycline-based chemotherapy in breast cancer patients. Cancer Chemother Pharmacol 79:535–543. https://doi.org/10.1007/s00280-017-3248-2

    Article  CAS  PubMed  Google Scholar 

  68. Zeng S, Yu X, Ma C, Song R, Zhang Z, Zi X et al (2017) Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci Rep 7:3151. https://doi.org/10.1038/s41598-017-02990-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang S, Nguyen LH, Zhou K, Tu HC, Sehgal A, Nassour I et al (2018) Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. Gastroenterology 154:1421–1434. https://doi.org/10.1053/j.gastro.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  70. Sadi AM, Wang DY, Youngson BJ, Miller N, Boerner S, Done SJ et al (2011) Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens. BMC Cancer 11:253. https://doi.org/10.1186/1471-2407-11-253

    Article  PubMed  PubMed Central  Google Scholar 

  71. O’ Leary PC, Penny SA, Dolan RT, Kelly CM, Madden SF, Rexhepaj E et al (2013) Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer. BMC Cancer 13:175. https://doi.org/10.1186/1471-2407-13-175

    Article  CAS  Google Scholar 

  72. Xu J, Zheng H, Yuan S, Zhou B, Zhao W, Pan Y et al (2019) Overexpression of ANLN in lung adenocarcinoma is associated with metastasis. Thorac Cancer 10:1702–1709. https://doi.org/10.1111/1759-7714.13135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ronkainen H, Hirvikoski P, Kauppila S, Vaarala MH (2011) Anillin expression is a marker of favourable prognosis in patients with renal cell carcinoma. Oncol Rep 25:129–133. https://doi.org/10.3892/or_00001051

    Article  CAS  PubMed  Google Scholar 

  74. Wang S, Mo Y, Midorikawa K, Zhang Z, Huang G, Ma N et al (2015) The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget 6:35893–35907. https://doi.org/10.18632/oncotarget.5651

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W et al (2007) Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 67:5117–5125. https://doi.org/10.1158/0008-5472.can-06-4040

    Article  CAS  PubMed  Google Scholar 

  76. Downs B, Sherman S, Cui J, Kim YC, Snyder C, Christensen M et al (2019) Common genetic variants contribute to incomplete penetrance: evidence from cancer-free BRCA1 mutation carriers. Eur J Cancer 107:68–78. https://doi.org/10.1016/j.ejca.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  77. Hjelm B, Forsstrom B, Igel U, Johannesson H, Stadler C, Lundberg E et al (2011) Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. Protein Sci 20:1824–1835. https://doi.org/10.1002/pro.716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J et al (2015) Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem 398:11–19. https://doi.org/10.1007/s11010-014-2200-6

    Article  CAS  PubMed  Google Scholar 

  79. Daga N, Eicher S, Kannan A, Casanova A, Low SH, Kreibich S et al (2018) Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Res 46:9309–9320. https://doi.org/10.1093/nar/gky798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendonsa AM, Na TY, Gumbiner BM (2018) E-cadherin in contact inhibition and cancer. Oncogene 37:4769–4780. https://doi.org/10.1038/s41388-018-0304-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hesse M, Raulf A, Pilz GA, Haberlandt C, Klein AM, Jabs R et al (2012) Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat Commun 3:1076. https://doi.org/10.1038/ncomms2089

    Article  CAS  PubMed  Google Scholar 

  82. Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549. https://doi.org/10.1126/science.1066700

    Article  CAS  PubMed  Google Scholar 

  83. Cepero Malo M, Duchemin AL, Guglielmi L, Patzel E, Sel S, Auffarth GU et al (2017) The Zebrafish anillin-eGFP reporter marks late dividing retinal precursors and stem cells entering neuronal lineages. PLoS ONE 12:e0170356. https://doi.org/10.1371/journal.pone.0170356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Paolini A, Duchemin AL, Albadri S, Patzel E, Bornhorst D, Gonzalez Avalos P et al (2015) Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development 142:832–839. https://doi.org/10.1242/dev.118612

    Article  CAS  PubMed  Google Scholar 

  85. Johung K, Goodwin EC, DiMaio D (2007) Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J Virol 81:2102–2116. https://doi.org/10.1128/jvi.02348-06

    Article  CAS  PubMed  Google Scholar 

  86. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C et al (2016) Conserved senescence associated genes and pathways in primary human fibroblasts detected by RNA-Seq. PLoS ONE 11:e0154531. https://doi.org/10.1371/journal.pone.0154531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang L, Maddox AS (2010) Anillin. Curr Biol 20:R135–R136. https://doi.org/10.1016/j.cub.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  88. Farley-Barnes KI, McCann KL, Ogawa LM, Merkel J, Surovtseva YV, Baserga SJ (2018) Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep 22:1923–1934. https://doi.org/10.1016/j.celrep.2018.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Misu S, Takebayashi M, Miyamoto K (2017) Nuclear actin in development and transcriptional reprogramming. Front Genet 8:27. https://doi.org/10.3389/fgene.2017.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miyamoto K, Gurdon JB (2013) Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 70:3289–3302. https://doi.org/10.1007/s00018-012-1235-7

    Article  CAS  PubMed  Google Scholar 

  91. Percipalle P (2013) Co-transcriptional nuclear actin dynamics. Nucleus 4:43–52. https://doi.org/10.4161/nucl.22798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miralles F, Visa N (2006) Actin in transcription and transcription regulation. Curr Opin Cell Biol 18:261–266. https://doi.org/10.1016/j.ceb.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  93. Miyamoto K, Pasque V, Jullien J, Gurdon JB (2011) Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 25:946–958. https://doi.org/10.1101/gad.615211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Serebryannyy LA, Parilla M, Annibale P, Cruz CM, Laster K, Gratton E et al (2016) Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 129:3412–3425. https://doi.org/10.1242/jcs.195867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chatterjee M, Pollard TD (2019) The functionally important N-terminal half of fission yeast Mid1p anillin is intrinsically disordered and undergoes phase separation. Biochemistry 58:3031–3041. https://doi.org/10.1021/acs.biochem.9b00217

    Article  CAS  PubMed  Google Scholar 

  96. Ashwin SS, Maeshima K, Sasai M (2020) Heterogeneous fluid-like movements of chromatin and their implications to transcription. Biophys Rev 12:461–468. https://doi.org/10.1007/s12551-020-00675-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Michieletto D, Gilbert N (2019) Role of nuclear RNA in regulating chromatin structure and transcription. Curr Opin Cell Biol 58:120–125. https://doi.org/10.1016/j.ceb.2019.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takayama KI, Suzuki Y, Yamamoto S, Obinata D, Takahashi S, Inoue S (2019) Integrative genomic analysis of OCT1 reveals coordinated regulation of androgen receptor in advanced prostate cancer. Endocrinology 160:463–472. https://doi.org/10.1210/en.2018-00923

    Article  CAS  PubMed  Google Scholar 

  99. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15:637–646. https://doi.org/10.1038/ncb2756

    Article  CAS  PubMed  Google Scholar 

  100. Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H et al (2019) Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8. J Human Genet 64:521–534. https://doi.org/10.1038/s10038-019-0584-6

    Article  CAS  Google Scholar 

  101. Tasto JJ, Morrell JL, Gould KL (2003) An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol 160:1093–1103. https://doi.org/10.1083/jcb.200211126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang J, Wan L, Dai X, Sun Y, Wei W (2014) Functional characterization of anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta 1845:277–293. https://doi.org/10.1016/j.bbcan.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Magliozzi JO, Sears J, Cressey L, Brady M, Opalko HE, Kettenbach AN et al (2020) Fission yeast Pak1 phosphorylates anillin-like Mid1 for spatial control of cytokinesis. J Cell Biol 219:e201908017. https://doi.org/10.1083/jcb.201908017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Willet AH, DeWitt AK, Beckley JR, Clifford DM, Gould KL (2019) NDR Kinase Sid2 drives anillin-like Mid1 from the membrane to promote cytokinesis and medial division site placement. Curr Biol 29:1055–1063. https://doi.org/10.1016/j.cub.2019.01.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim H, Johnson JM, Lera RF, Brahma S, Burkard ME (2017) Anillin phosphorylation controls timely membrane association and successful cytokinesis. PLoS Genet 13:e1006511. https://doi.org/10.1371/journal.pgen.1006511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith LC, Ralston-Hooper KJ, Ferguson PL, Sabo-Attwood T (2016) The G protein-coupled estrogen receptor agonist G-1 inhibits nuclear estrogen receptor activity and stimulates novel phosphoproteomic signatures. Toxicol Sci 151:434–446. https://doi.org/10.1093/toxsci/kfw057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chuang C, Lin SH, Huang F, Pan J, Josic D, Yu-Lee LY (2010) Acetylation of RNA processing proteins and cell cycle proteins in mitosis. J Proteome Res 9:4554–4564. https://doi.org/10.1021/pr100281h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Larisa Litovchick (Virginia Commonwealth University School of Medicine) for the insightful discussion and comments about this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Ivanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naydenov, N.G., Koblinski, J.E. & Ivanov, A.I. Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell. Mol. Life Sci. 78, 621–633 (2021). https://doi.org/10.1007/s00018-020-03605-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03605-9

Keywords

Navigation