Skip to main content

Advertisement

Log in

Targeting protein methylation: from chemical tools to precision medicines

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambler RP, Rees MW (1959) ε-N-methyl-lysine in bacterial flagellar protein. Nature 184:56–57

    Article  CAS  PubMed  Google Scholar 

  2. Murray K (1964) the occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  3. Murn J, Shi Y (2017) The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol 18:517–527

    Article  CAS  PubMed  Google Scholar 

  4. Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwiatkowski S, Seliga AK, Vertommen D, Terreri M, Ishikawa T, Grabowska I, Tiebe M, Teleman AA, Jagielski AK, Veiga-da-Cunha M, Drozak J (2018) SETD3 protein is the actin-specific histidine N-methyltransferase. Elife. https://doi.org/10.7554/eLife.37921

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilkinson AW, Diep J, Dai S, Liu S, Ooi YS, Song D, Li T-M, Horton JR, Zhang X, Liu C, Trivedi DV, Ruppel KM, Vilches-Moure JG, Casey KM, Mak J, Cowan T, Elias JE, Nagamine CM, Spudich JA, Cheng X, Carette JE, Gozani O (2019) SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature 565:372–376

    Article  CAS  PubMed  Google Scholar 

  7. Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436:1103–1106

    Article  CAS  PubMed  Google Scholar 

  8. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    Article  CAS  PubMed  Google Scholar 

  9. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  PubMed  Google Scholar 

  11. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  CAS  PubMed  Google Scholar 

  12. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones PA, Issa J-PJ, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641

    Article  CAS  PubMed  Google Scholar 

  14. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

  15. Copeland RA (2018) Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery. Philos Trans R Soc Lond B Biol, Sci, p 373

    Google Scholar 

  16. Hamamoto R, Saloura V, Nakamura Y (2015) Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 15:110–124

    Article  CAS  PubMed  Google Scholar 

  17. Buuh ZY, Lyu Z, Wang RE (2018) Interrogating the roles of post-translational modifications of non-histone proteins. J Med Chem 61:3239–3252

    Article  CAS  PubMed  Google Scholar 

  18. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481

    Article  CAS  PubMed  Google Scholar 

  19. Blagg J, Workman P (2017) Choose and use your chemical probe wisely to explore cancer biology. Cancer Cell 32:9–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J, Bountra C, Brennan PE, Brown PJ, Bunnage ME, Buser-Doepner C, Campbell RM, Carter AJ, Cohen P, Copeland RA, Cravatt B, Dahlin JL, Dhanak D, Edwards AM, Frederiksen M, Frye SV, Gray N, Grimshaw CE, Hepworth D, Howe T, Huber KVM, Jin J, Knapp S, Kotz JD, Kruger RG, Lowe D, Mader MM, Marsden B, Mueller-Fahrnow A, Mueller S, O’Hagan RC, Overington JP, Owen DR, Rosenberg SH, Ross R, Roth B, Schapira M, Schreiber SL, Shoichet B, Sundstroem M, Superti-Furga G, Taunton J, Toledo-Sherman L, Walpole C, Walters MA, Willson TM, Workman P, Young RN, Zuercher WJ (2015) The promise and peril of chemical probes (vol 11, pg 536, 2015). Nat Chem Biol 11:887

    Article  CAS  PubMed  Google Scholar 

  21. Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161

    Article  CAS  PubMed  Google Scholar 

  22. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung C-W, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468:1119–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brand M, Measures AR, Wilson BG, Cortopassi WA, Alexander R, Hoss M, Hewings DS, Rooney TPC, Paton RS, Conway SJ (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 10:22–39

    Article  CAS  PubMed  Google Scholar 

  25. Chen P, Chaikuad A, Bamborough P, Bantscheff M, Bountra C, Chung C-W, Fedorov O, Grandi P, Jung D, Lesniak R, Lindon M, Muller S, Philpott M, Prinjha R, Rogers C, Selenski C, Tallant C, Werner T, Willson TM, Knapp S, Drewry DH (2016) Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J Med Chem 59:1410–1424

    Article  CAS  PubMed  Google Scholar 

  26. Clark PGK, Vieira LCC, Tallant C, Fedorov O, Singleton DC, Rogers CM, Monteiro OP, Bennett JM, Baronio R, Muller S, Daniels DL, Mendez J, Knapp S, Brennan PE, Dixon DJ (2015) LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew Chem Weinheim Bergstr Ger 127:6315–6319

    PubMed  PubMed Central  Google Scholar 

  27. Drouin L, McGrath S, Vidler LR, Chaikuad A, Monteiro O, Tallant C, Philpott M, Rogers C, Fedorov O, Liu M, Akhtar W, Hayes A, Raynaud F, Muller S, Knapp S, Hoelder S (2015) Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J Med Chem 58:2553–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fish PV, Filippakopoulos P, Bish G, Brennan PE, Bunnage ME, Cook AS, Federov O, Gerstenberger BS, Jones H, Knapp S, Marsden B, Nocka K, Owen DR, Philpott M, Picaud S, Primiano MJ, Ralph MJ, Sciammetta N, Trzupek JD (2012) Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 55:9831–9837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hay DA, Fedorov O, Martin S, Singleton DC, Tallant C, Wells C, Picaud S, Philpott M, Monteiro OP, Rogers CM, Conway SJ, Rooney TPC, Tumber A, Yapp C, Filippakopoulos P, Bunnage ME, Muller S, Knapp S, Schofield CJ, Brennan PE (2014) Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc 136:9308–9319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vazquez R, Riveiro ME, Astorgues-Xerri L, Odore E, Rezai K, Erba E, Panini N, Rinaldi A, Kwee I, Beltrame L, Bekradda M, Cvitkovic E, Bertoni F, Frapolli R, D’Incalci M (2017) The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 8:7598–7613

    Article  PubMed  Google Scholar 

  31. Scheer S, Ackloo S, Medina TS, Schapira M, Li F, Ward JA, Lewis AM, Northrop JP, Richardson PL, Kaniskan HÜ, Shen Y, Liu J, Smil D, McLeod D, Zepeda-Velazquez CA, Luo M, Jin J, Barsyte-Lovejoy D, Huber KVM, De Carvalho DD, Vedadi M, Zaph C, Brown PJ, Arrowsmith CH (2019) A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat Commun 10:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borchardt RT, Shiong Y, Huber JA, Wycpalek AF (1976) Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 6. Structural modifications of S-adenosylmethionine. J Med Chem 19:1104–1110

    Article  CAS  PubMed  Google Scholar 

  33. Vedel M, Lawrence F, Robert-Gero M, Lederer E (1978) The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus. Biochem Biophys Res Commun 85:371–376

    Article  CAS  PubMed  Google Scholar 

  34. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    Article  CAS  PubMed  Google Scholar 

  35. Cherblanc FL, Chapman KL, Brown R, Fuchter MJ (2013) Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat Chem Biol 9:136–137

    Article  CAS  PubMed  Google Scholar 

  36. Bartel RL, Borchardt RT (1984) Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S-adenosylmethionine-dependent transmethylations in mouse L929 cells. Mol Pharmacol 25:418–424

    CAS  PubMed  Google Scholar 

  37. Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W (2013) S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta Mol Basis Dis 1832:204–215

    Article  CAS  Google Scholar 

  38. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R, Schapira M (2011) Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 51:612–623

    Article  CAS  PubMed  Google Scholar 

  40. Schapira M (2016) Chemical inhibition of protein methyltransferases. Cell Chem Biol 23:1067–1076

    Article  CAS  PubMed  Google Scholar 

  41. Boriack-Sjodin PA, Swinger KK (2016) Protein methyltransferases: a distinct, diverse, and dynamic family of enzymes. Biochemistry 55:1557–1569

    Article  CAS  PubMed  Google Scholar 

  42. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, Shaw B, The J, Lima-Fernandes E, Szewczyk MM, Cheng D, Klinge KL, Li H-Q, Pliushchev M, Algire MA, Maag D, Guo J, Dietrich J, Panchal SC, Petros AM, Sweis RF, Torrent M, Bigelow LJ, Senisterra G, Li F, Kennedy S, Wu Q, Osterling DJ, Lindley DJ, Gao W, Galasinski S, Barsyte-Lovejoy D, Vedadi M, Buchanan FG, Arrowsmith CH, Chiang GG, Sun C, Pappano WN (2017) The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol 13:389–395

    Article  CAS  PubMed  Google Scholar 

  43. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E (2017) An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol 13:381–388

    Article  CAS  PubMed  Google Scholar 

  44. Kaniskan HU, Eram MS, Zhao K, Szewczyk MM, Yang X, Schmidt K, Luo X, Xiao S, Dai M, He F, Zang I, Lin Y, Li F, Dobrovetsky E, Smil D, Min S-J, Lin-Jones J, Schapira M, Atadja P, Li E, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Liu F, Yu Z, Vedadi M, Jin J (2018) Discovery of potent and selective allosteric inhibitors of protein arginine methyltransferase 3 (PRMT3). J Med Chem 61:1204–1217

    Article  CAS  PubMed  Google Scholar 

  45. Kaniskan HU, Szewczyk MM, Yu Z, Eram MS, Yang X, Schmidt K, Luo X, Dai M, He F, Zang I, Lin Y, Kennedy S, Li F, Dobrovetsky E, Dong A, Smil D, Min S-J, Landon M, Lin-Jones J, Huang X-P, Roth BL, Schapira M, Atadja P, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Zhao K, Jin J, Vedadi M (2015) A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed Engl 54:5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richon VM, Johnston D, Sneeringer CJ, Jin L, Majer CR, Elliston K, Jerva LF, Scott MP, Copeland RA (2011) Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des 78:199–210

    Article  CAS  PubMed  Google Scholar 

  47. Chouhan BPS, Maimaiti S, Gade M, Laurino P (2019) Rossmann-fold methyltransferases: taking a “β-Turn” around their cofactor, S -adenosylmethionine. Biochemistry 58:166–170

    Article  CAS  PubMed  Google Scholar 

  48. Kaniskan HU, Martini ML, Jin J (2018) Inhibitors of protein methyltransferases and demethylases. Chem Rev 118:989–1068

    Article  CAS  PubMed  Google Scholar 

  49. Kaniskan HÜ, Jin J (2017) Recent progress in developing selective inhibitors of protein methyltransferases. Curr Opin Chem Biol 39:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaniskan HÜ, Jin J (2015) Chemical probes of histone lysine methyltransferases. ACS Chem Biol 10:40–50

    Article  CAS  PubMed  Google Scholar 

  51. Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A, Liu J, Snyder JP, Bedford MT, Cheng X (2009) Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 16:312–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574

    Article  CAS  PubMed  Google Scholar 

  53. Shi Y, Do JT, Desponts C, Hahm HS, Schöler HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528

    Article  CAS  PubMed  Google Scholar 

  54. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, Wigle TJ, DiMaggio PA, Wasney GA, Siarheyeva A, Dong A, Tempel W, Wang S-C, Chen X, Chau I, Mangano TJ, Huang X, Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye SV, Arrowsmith CH, Jin J (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang X-P, Allali-Hassani A, Janzen WP, Roth BL, Frye SV, Arrowsmith CH, Brown PJ, Vedadi M, Jin J (2013) Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J Med Chem 56:8931–8942

    Article  CAS  PubMed  Google Scholar 

  57. Sweis RF, Pliushchev M, Brown PJ, Guo J, Li F, Maag D, Petros AM, Soni NB, Tse C, Vedadi M, Michaelides MR, Chiang GG, Pappano WN (2014) Discovery and development of potent and selective inhibitors of histone methyltransferase G9a. ACS Med Chem Lett 5:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pappano WN, Guo J, He Y, Ferguson D, Jagadeeswaran S, Osterling DJ, Gao W, Spence JK, Pliushchev M, Sweis RF, Buchanan FG, Michaelides MR, Shoemaker AR, Tse C, Chiang GG (2015) The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia. PLoS One 10:e0131716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wagner T, Greschik H, Burgahn T, Schmidtkunz K, Schott A-K, McMillan J, Baranauskienė L, Xiong Y, Fedorov O, Jin J, Oppermann U, Matulis D, Schüle R, Jung M (2016) Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Res 44:e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Casciello F, Windloch K, Gannon F, Lee JS (2015) Functional role of G9a histone methyltransferase in cancer. Front Immunol 6:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Huang Y, Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72:4257–4272

    Article  CAS  PubMed  Google Scholar 

  62. Komatsu S, Imoto I, Tsuda H, Kozaki K, Muramatsu T, Shimada Y, Aiko S, Yoshizumi Y, Ichikawa D, Otsuji E, Inazawa J (2009) Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30:1139–1146

    Article  CAS  PubMed  Google Scholar 

  63. Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H, Imoto I, Inazawa J, Otsuji E (2015) Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer 112:357–364

    Article  CAS  PubMed  Google Scholar 

  64. Cho H-S, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BAJ, Yamaue H, Nakamura Y, Hamamoto R (2012) RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sakamoto LHT, de Andrade RV, Felipe MSS, Motoyama AB, Pittella Silva F (2014) SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leuk Res 38:496–502

    Article  CAS  PubMed  Google Scholar 

  66. Cowen SD, Russell D, Dakin LA, Chen H, Larsen NA, Godin R, Throner S, Zheng X, Molina A, Wu J, Cheung T, Howard T, Garcia-Arenas R, Keen N, Pendleton CS, Pietenpol JA, Ferguson AD (2016) Design, synthesis, and biological activity of substrate competitive SMYD2 inhibitors. J Med Chem 59:11079–11097

    Article  CAS  PubMed  Google Scholar 

  67. Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C, Cheung T, Garcia-Arenas R, Cowen S, Wu J, Godin R, Chen H, Keen N (2011) Structural basis of substrate methylation and inhibition of SMYD2. Structure 19:1262–1273

    Article  CAS  PubMed  Google Scholar 

  68. Li LX, Zhou JX, Calvet JP, Godwin AK, Jensen RA, Li X (2018) Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis 9:326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sweis RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, Guo J, Jakob CG, Kennedy S, Li F, Maag D, Shaw B, Soni NB, Vedadi M, Pappano WN (2015) Discovery of A-893, a new cell-active benzoxazinone inhibitor of lysine methyltransferase SMYD2. ACS Med Chem Lett 6:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, Emtage S, Fan L, Gheyi T, Li F, Liu S, Martin JR, Mendel D, Olsen JB, Pelletier L, Shatseva T, Wu S, Zhang FF, Arrowsmith CH, Brown PJ, Campbell RM, Garcia BA, Barsyte-Lovejoy D, Mader M, Vedadi M (2015) LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J Biol Chem 290:13641–13653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–632

    Article  CAS  PubMed  Google Scholar 

  72. Eggert E, Hillig RC, Koehr S, Stockigt D, Weiske J, Barak N, Mowat J, Brumby T, Christ CD, Ter Laak A, Lang T, Fernandez-Montalvan AE, Badock V, Weinmann H, Hartung IV, Barsyte-Lovejoy D, Szewczyk M, Kennedy S, Li F, Vedadi M, Brown PJ, Santhakumar V, Arrowsmith CH, Stellfeld T, Stresemann C (2016) Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J Med Chem 59:4578–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thomenius MJ, Totman J, Harvey D, Mitchell LH, Riera TV, Cosmopoulos K, Grassian AR, Klaus C, Foley M, Admirand EA, Jahic H, Majer C, Wigle T, Jacques SL, Gureasko J, Brach D, Lingaraj T, West K, Smith S, Rioux N, Waters NJ, Tang C, Raimondi A, Munchhof M, Mills JE, Ribich S, Porter Scott M, Kuntz KW, Janzen WP, Moyer M, Smith JJ, Chesworth R, Copeland RA, Boriack-Sjodin PA (2018) Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. PLoS One 13:e0197372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peserico A, Germani A, Sanese P, Barbosa AJ, Di Virgilio V, Fittipaldi R, Fabini E, Bertucci C, Varchi G, Moyer MP, Caretti G, Del Rio A, Simone C (2015) A SMYD3 small-molecule inhibitor impairing cancer cell growth. J Cell Physiol 230:2447–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Aller GS, Graves AP, Elkins PA, Bonnette WG, McDevitt PJ, Zappacosta F, Annan RS, Dean TW, Su D-S, Carpenter CL, Mohammad HP, Kruger RG (2016) Structure-based design of a novel SMYD3 inhibitor that bridges the SAM-and MEKK2-binding pockets. Structure 24:774–781

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25:1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen AT, Taranova O, He J, Zhang Y (2011) DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117:6912–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A, Marineau JJ, Qi J, Barsyte-Lovejoy D, Yi J, Marcellus R, Iacob RE, Engen JR, Griffin C, Aman A, Wienholds E, Li F, Pineda J, Estiu G, Shatseva T, Hajian T, Al-Awar R, Dick JE, Vedadi M, Brown PJ, Arrowsmith CH, Bradner JE, Schapira M (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3:1288

    Article  CAS  PubMed  Google Scholar 

  79. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Waters NJ, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM (2013) Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    Article  CAS  PubMed  Google Scholar 

  82. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    Article  CAS  PubMed  Google Scholar 

  83. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang X-P, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J (2013) An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol 8:1324–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, Porter Scott M, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM, Kuntz KW, Keilhack H (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci US A 110:7922–7927

    Article  Google Scholar 

  85. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM, Copeland RA (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci 107:20980–20985

    Article  PubMed  Google Scholar 

  86. Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho Y-J, Koellhoffer EC, Pomeroy SL, Orkin SH, Roberts CWM (2010) Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schapira M, Tyers M, Torrent M, Arrowsmith CH (2017) WD40 repeat domain proteins: a novel target class? Nat Rev Drug Discov 16:773–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song R, Wang Z-D, Schapira M (2017) Disease association and druggability of WD40 repeat proteins. J Proteome Res 16:3766–3773

    Article  CAS  PubMed  Google Scholar 

  89. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baker T, Nerle S, Pritchard J, Zhao B, Rivera VM, Garner A, Gonzalvez F (2015) Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors. Oncotarget 6:32646–32655

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gibaja V, Shen F, Harari J, Korn J, Ruddy D, Saenz-Vash V, Zhai H, Rejtar T, Paris CG, Yu Z, Lira M, King D, Qi W, Keen N, Hassan AQ, Chan HM (2016) Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene 35:558–566

    Article  CAS  PubMed  Google Scholar 

  92. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm 5:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hasegawa M, Toma-Fukai S, Kim J-D, Fukamizu A, Shimizu T (2014) Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats. FEBS Lett 588:1942–1948

    Article  CAS  PubMed  Google Scholar 

  95. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:mEP50 complex. Proc Natl Acad Sci USA 109:17960–17965

    Article  PubMed  Google Scholar 

  96. Hu H, Qian K, Ho M-C, Zheng YG (2016) Small molecule inhibitors of protein arginine methyltransferases. Expert Opin Investig Drugs 25:335–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Siarheyeva A, Senisterra G, Allali-Hassani A, Dong A, Dobrovetsky E, Wasney GA, Chau I, Marcellus R, Hajian T, Liu F, Korboukh I, Smil D, Bolshan Y, Min J, Wu H, Zeng H, Loppnau P, Poda G, Griffin C, Aman A, Brown PJ, Jin J, Al-Awar R, Arrowsmith CH, Schapira M, Vedadi M (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20:1425–1435

    Article  CAS  PubMed  Google Scholar 

  98. Eram MS, Shen Y, Szewczyk M, Wu H, Senisterra G, Li F, Butler KV, Kaniskan HU, Speed BA, Dela Sena C, Dong A, Zeng H, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J (2016) A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol 11:772–781

    Article  CAS  PubMed  Google Scholar 

  99. Mitchell LH, Drew AE, Ribich SA, Rioux N, Swinger KK, Jacques SL, Lingaraj T, Boriack-Sjodin PA, Waters NJ, Wigle TJ, Moradei O, Jin L, Riera T, Porter-Scott M, Moyer MP, Smith JJ, Chesworth R, Copeland RA (2015) Aryl pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. ACS Med Chem Lett 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shen Y, Szewczyk MM, Eram MS, Smil D, Kaniskan HU, de Freitas RF, Senisterra G, Li F, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J (2016) Discovery of a potent, selective, and cell-active dual inhibitor of protein arginine methyltransferase 4 and protein arginine methyltransferase 6. J Med Chem 59:9124–9139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakayama K, Szewczyk MM, Dela Sena C, Wu H, Dong A, Zeng H, Li F, de Freitas RF, Eram MS, Schapira M, Baba Y, Kunitomo M, Cary DR, Tawada M, Ohashi A, Imaeda Y, Saikatendu KS, Grimshaw CE, Vedadi M, Arrowsmith CH, Barsyte-Lovejoy D, Kiba A, Tomita D, Brown PJ (2018) TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 9:18480–18493

    PubMed  PubMed Central  Google Scholar 

  102. Veland N, Hardikar S, Zhong Y, Gayatri S, Dan J, Strahl BD, Rothbart SB, Bedford MT, Chen T (2017) The arginine methyltransferase PRMT6 regulates DNA Methylation and contributes to global DNA hypomethylation in cancer. Cell Rep 21:3390–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Herkt SC, Kuvardina ON, Herglotz J, Schneider L, Meyer A, Pommerenke C, Salinas-Riester G, Seifried E, Bonig H, Lausen J (2018) Protein arginine methyltransferase 6 controls erythroid gene expression and differentiation of human CD34(+) progenitor cells. Haematologica 103:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bouchard C, Sahu P, Meixner M, Notzold RR, Rust MB, Kremmer E, Feederle R, Hart-Smith G, Finkernagel F, Bartkuhn M, Savai Pullamsetti S, Nist A, Stiewe T, Philipsen S, Bauer U-M (2018) Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep 24:3339–3352

    Article  CAS  PubMed  Google Scholar 

  105. Mahmoud Elsayed HM, Hassan M, Nagy M, Amin A, Elguindy A, Wagdy K, Yacoub M (2018) A novel method to measure mitral valve area in patients with rheumatic mitral stenosis using three-dimensional transesophageal echocardiography: feasibility and validation. Echocardiography 35:368–374

    Article  PubMed  Google Scholar 

  106. Drew AE, Moradei O, Jacques SL, Rioux N, Boriack-Sjodin AP, Allain C, Scott MP, Jin L, Raimondi A, Handler JL, Ott HM, Kruger RG, McCabe MT, Sneeringer C, Riera T, Shapiro G, Waters NJ, Mitchell LH, Duncan KW, Moyer MP, Copeland RA, Smith J, Chesworth R, Ribich SA (2017) Identification of a CARM1 inhibitor with potent in vitro and in vivo activity in preclinical models of multiple myeloma. Sci Rep 7:17993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhong X-Y, Yuan X-M, Xu Y-Y, Yin M, Yan W-W, Zou S-W, Wei L-M, Lu H-J, Wang Y-P, Lei Q-Y (2018) CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep 24:3207–3223

    Article  CAS  PubMed  Google Scholar 

  108. Kagoya Y, Saijo H, Matsunaga Y, Guo T, Saso K, Anczurowski M, Wang C-H, Sugata K, Murata K, Butler MO, Arrowsmith CH, Hirano N (2018) Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J Autoimmun 97:10–21

    Article  CAS  PubMed  Google Scholar 

  109. Tsai W-C, Gayatri S, Reineke LC, Sbardella G, Bedford MT, Lloyd RE (2016) Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem 291:22671–22685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boisvert F-M, Cote J, Boulanger M-C, Richard S (2003) A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteom 2:1319–1330

    Article  CAS  Google Scholar 

  112. Uhlmann T, Geoghegan VL, Thomas B, Ridlova G, Trudgian DC, Acuto O (2012) A method for large-scale identification of protein arginine methylation. Mol Cell Proteom 11:1489–1499

    Article  CAS  Google Scholar 

  113. Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V, Bonaldi T (2013) Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Mol BioSyst 9:2231–2247

    Article  CAS  PubMed  Google Scholar 

  114. Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O (2015) Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun 6:6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteom 13:372–387

    Article  CAS  Google Scholar 

  116. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, Rioux N, Munchhof MJ, Jin L, Jacques SL, West KA, Lingaraj T, Stickland K, Ribich SA, Raimondi A, Scott MP, Waters NJ, Pollock RM, Smith JJ, Barbash O, Pappalardi M, Ho TF, Nurse K, Oza KP, Gallagher KT, Kruger R, Moyer MP, Copeland RA, Chesworth R, Duncan KW (2015) A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11:432–437

    Article  CAS  PubMed  Google Scholar 

  117. Gerhart SV, Kellner WA, Thompson C, Pappalardi MB, Zhang X-P, Montes de Oca R, Penebre E, Duncan K, Boriack-Sjodin A, Le B, Majer C, McCabe MT, Carpenter C, Johnson N, Kruger RG, Barbash O (2018) Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep 8:9711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, Matias PM, Maslen SL, Skehel JM, Stewart GS, Davies CC (2017) PRMT5-dependent methylation of the TIP60 Coactivator RUVBL1 is a key regulator of homologous recombination. Mol Cell 65:900–916.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lubyova B, Hodek J, Zabransky A, Prouzova H, Hubalek M, Hirsch I, Weber J (2017) PRMT5: a novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS One 12:e0186982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gao G, Dhar S, Bedford MT (2017) PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1. Nucleic Acids Res 45:4359–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S (2018) Loss of PRMT5 promotes pdgfralpha degradation during oligodendrocyte differentiation and myelination. Dev Cell 46:426–440.e5

    Article  CAS  PubMed  Google Scholar 

  122. Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, Chen S, Bernstein E, Canoll P, Guccione E, Casaccia P (2018) PRMT5-mediated regulation of developmental myelination. Nat Commun 9:2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dong Y, Song C, Wang Y, Lei Z, Xu F, Guan H, Chen A, Li F (2017) Inhibition of PRMT5 suppresses osteoclast differentiation and partially protects against ovariectomy-induced bone loss through downregulation of CXCL10 and RSAD2. Cell Signal 34:55–65

    Article  CAS  PubMed  Google Scholar 

  124. Kaushik S, Liu F, Veazey KJ, Gao G, Das P, Neves LF, Lin K, Zhong Y, Lu Y, Giuliani V, Bedford MT, Nimer SD, Santos MA (2018) Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML. Leukemia 32:499–509

    Article  CAS  PubMed  Google Scholar 

  125. Chiang K, Zielinska AE, Shaaban AM, Sanchez-Bailon MP, Jarrold J, Clarke TL, Zhang J, Francis A, Jones LJ, Smith S, Barbash O, Guccione E, Farnie G, Smalley MJ, Davies CC (2017) PRMT5 is a critical regulator of breast cancer stem cell function via histone methylation and FOXP1 expression. Cell Rep 21:3498–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E (2013) Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27:1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Braun CJ, Stanciu M, Boutz PL, Patterson JC, Calligaris D, Higuchi F, Neupane R, Fenoglio S, Cahill DP, Wakimoto H, Agar NYR, Yaffe MB, Sharp PA, Hemann MT, Lees JA (2017) Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32:411–426.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP, Li F, Kennedy S, Li B, Mader MM, Arrowsmith CH, Brown PJ, Eram MS, Szewczyk MM, Barsyte-Lovejoy D, Vedadi M, Guccione E, Campbell RM (2018) LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 9:612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Musselman CA, Lalonde M-E, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Santiago C, Nguyen K, Schapira M (2011) Druggability of methyl-lysine binding sites. J Comput Aided Mol Des 25:1171–1178

    Article  CAS  PubMed  Google Scholar 

  131. Zaware N, Zhou M-M (2017) Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Curr Opin Chem Biol 39:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. James LI, Frye SV (2016) Chemical probes for methyl lysine reader domains. Curr Opin Chem Biol 33:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wagner EK, Nath N, Flemming R, Feltenberger JB, Denu JM (2012) Identification and characterization of small molecule inhibitors of a plant homeodomain finger. Biochemistry 51:8293–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bhushan B, Erdmann A, Zhang Y, Belle R, Johannson C, Oppermann U, Hopkinson RJ, Schofield CJ, Kawamura A (2018) Investigations on small molecule inhibitors targeting the histone H3K4 tri-methyllysine binding PHD-finger of JmjC histone demethylases. Bioorg Med Chem 26:2984–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39:536–547

    Article  CAS  PubMed  Google Scholar 

  137. Patel DJ (2016) A structural perspective on readout of epigenetic histone and dna methylation marks. Cold Spring Harb Perspect Biol 8:a018754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21:221–230

    Article  CAS  PubMed  Google Scholar 

  139. Gao C, Herold JM, Kireev D, Wigle T, Norris JL, Frye S (2011) Biophysical probes reveal a “Compromise” nature of the methyl-lysine binding pocket in L3MBTL1. J Am Chem Soc 133:5357–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Herold JM, Wigle TJ, Norris JL, Lam R, Korboukh VK, Gao C, Ingerman LA, Kireev DB, Senisterra G, Vedadi M, Tripathy A, Brown PJ, Arrowsmith CH, Jin J, Janzen WP, Frye SV (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54:2504–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold JM, MacNevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang X-P, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV (2013) Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 9:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Camerino MA, Zhong N, Dong A, Dickson BM, James LI, Baughman BM, Norris JL, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV (2013) The structure-activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface. Medchemcomm 4:1501–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Esteve P-O, Terragni J, Deepti K, Chin HG, Dai N, Espejo A, Correa IRJ, Bedford MT, Pradhan S (2014) Methyllysine reader plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) antagonizes DNA (cytosine-5) methyltransferase 1 (DNMT1) proteasomal degradation. J Biol Chem 289:8277–8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation “readers”. Trends Biochem Sci 38:546–555

    Article  CAS  PubMed  Google Scholar 

  145. Perfetti MT, Baughman BM, Dickson BM, Mu Y, Cui G, Mader P, Dong A, Norris JL, Rothbart SB, Strahl BD, Brown PJ, Janzen WP, Arrowsmith CH, Mer G, McBride KM, James LI, Frye SV (2015) Identification of a fragment-like small molecule ligand for the methyl-lysine binding protein, 53BP1. ACS Chem Biol 10:1072–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang Y-C, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D (2018) Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 36:95–102

    Article  CAS  PubMed  Google Scholar 

  147. Pellegrino S, Michelena J, Teloni F, Imhof R, Altmeyer M (2017) Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin. Cell Rep 19:1819–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bae N, Viviano M, Su X, Lv J, Cheng D, Sagum C, Castellano S, Bai X, Johnson C, Khalil MI, Shen J, Chen K, Li H, Sbardella G, Bedford MT (2017) Developing Spindlin1 small-molecule inhibitors by using protein microarrays. Nat Chem Biol 13:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Drewes G, Knapp S (2018) Chemoproteomics and Chemical Probes for Target Discovery. Trends Biotechnol 36:1275–1286

    Article  CAS  PubMed  Google Scholar 

  150. Yap KL, Zhou M-M (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 50:1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Simhadri C, Daze KD, Douglas SF, Quon TTH, Dev A, Gignac MC, Peng F, Heller M, Boulanger MJ, Wulff JE, Hof F (2014) Chromodomain antagonists that target the polycomb-group methyllysine reader protein chromobox homolog 7 (CBX7). J Med Chem 57:2874–2883

    Article  CAS  PubMed  Google Scholar 

  152. Gil J, O’Loghlen A (2014) PRC1 complex diversity: where is it taking us? Trends Cell Biol 24:632–641

    Article  CAS  PubMed  Google Scholar 

  153. Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, Peters G, Carnero A, Beach D, Gil J (2005) CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 24:5543–5551

    Article  CAS  PubMed  Google Scholar 

  154. Stuckey JI, Dickson BM, Cheng N, Liu Y, Norris JL, Cholensky SH, Tempel W, Qin S, Huber KG, Sagum C, Black K, Li F, Huang X-P, Roth BL, Baughman BM, Senisterra G, Pattenden SG, Vedadi M, Brown PJ, Bedford MT, Min J, Arrowsmith CH, James LI, Frye SV (2016) A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat Chem Biol 12:180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M, Zhou M-M (2015) Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol 22:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ren C, Smith SG, Yap K, Li S, Li J, Mezei M, Rodriguez Y, Vincek A, Aguilo F, Walsh MJ, Zhou M-M (2016) Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med Chem Lett 7:601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  158. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954

    Article  CAS  PubMed  Google Scholar 

  159. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    Article  PubMed  Google Scholar 

  160. Knutson SK, Kawano S, Minoshima Y, Warholic NM, Huang K-C, Xiao Y, Kadowaki T, Uesugi M, Kuznetsov G, Kumar N, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, Waters NJ, Smith JJ, Porter-Scott M, Chesworth R, Moyer MP, Copeland RA, Richon VM, Uenaka T, Pollock RM, Kuntz KW, Yokoi A, Keilhack H (2014) Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther 13:842–854

    Article  CAS  PubMed  Google Scholar 

  161. Bromberg KD, Mitchell TRH, Upadhyay AK, Jakob CG, Jhala MA, Comess KM, Lasko LM, Li C, Tuzon CT, Dai Y, Li F, Eram MS, Nuber A, Soni NB, Manaves V, Algire MA, Sweis RF, Torrent M, Schotta G, Sun C, Michaelides MR, Shoemaker AR, Arrowsmith CH, Brown PJ, Santhakumar V, Martin A, Rice JC, Chiang GG, Vedadi M, Barsyte-Lovejoy D, Pappano WN (2017) The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nat Chem Biol 13:317–324

    Article  CAS  PubMed  Google Scholar 

  162. Mitchell LH, Boriack-Sjodin PA, Smith S, Thomenius M, Rioux N, Munchhof M, Mills JE, Klaus C, Totman J, Riera TV, Raimondi A, Jacques SL, West K, Foley M, Waters NJ, Kuntz KW, Wigle TJ, Scott MP, Copeland RA, Smith JJ, Chesworth R (2016) Novel oxindole sulfonamides and sulfamides: EPZ031686, the first orally bioavailable small molecule SMYD3 inhibitor. ACS Med Chem Lett 7:134–138

    Article  CAS  PubMed  Google Scholar 

  163. Barsyte-Lovejoy D, Li F, Oudhoff MJ, Tatlock JH, Dong A, Zeng H, Wu H, Freeman SA, Schapira M, Senisterra GA, Kuznetsova E, Marcellus R, Allali-Hassani A, Kennedy S, Lambert J-P, Couzens AL, Aman A, Gingras A-C, Al-Awar R, Fish PV, Gerstenberger BS, Roberts L, Benn CL, Grimley RL, Braam MJS, Rossi FMV, Sudol M, Brown PJ, Bunnage ME, Owen DR, Zaph C, Vedadi M, Arrowsmith CH (2014) (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc Natl Acad Sci USA 111:12853–12858

    Article  CAS  PubMed  Google Scholar 

  164. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber KVM, Schonegger A, Marcellus R, Bilban M, Bock C, Brown PJ, Zuber J, Bennett KL, Al-Awar R, Delwel R, Nerlov C, Arrowsmith CH, Superti-Furga G (2015) Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 11:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors receive supported from a fellowship from the Natural Sciences and Engineering Research Council (DD) and the SGC, a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation—FAPESP, Takeda, and Wellcome [106169/ZZ14/Z]. We thank Dr Peter J Brown for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Barsyte-Lovejoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilworth, D., Barsyte-Lovejoy, D. Targeting protein methylation: from chemical tools to precision medicines. Cell. Mol. Life Sci. 76, 2967–2985 (2019). https://doi.org/10.1007/s00018-019-03147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03147-9

Keywords

Navigation