Skip to main content

Advertisement

Log in

Glycine receptors and glycine transporters: targets for novel analgesics?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized—among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Modified from ref. [8]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10:287–333

    Article  PubMed  Google Scholar 

  2. Nuesch E, Rutjes AW, Husni E, Welch V, Juni P (2009) Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev CD003115

  3. Zeilhofer HU, Brune K (2013) Cyclooxygenase inhibitors: basic aspects. In: McMahon SB, Koltzenburg M, Tracey I, Turk D (eds) Wall and Melzack’s textbook of pain, 6th edn. Saunders, New South Wales, pp 444–454

    Google Scholar 

  4. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpaa M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brix Finnerup N, Hein Sindrup S, Staehelin Jensen T (2013) Management of painful neuropathies. Handb Clin Neurol 115:279–290

    Article  PubMed  Google Scholar 

  6. Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jäger T, Sandkühler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662

    Article  CAS  PubMed  Google Scholar 

  7. Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  CAS  Google Scholar 

  8. Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, Johannssen H, Hösli L, Haenraets K, Ghanem A, Conzelmann KK, Bösl M, Zeilhofer HU (2015) Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85:1289–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of gaba-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296:496–505

    Article  CAS  PubMed  Google Scholar 

  10. Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bösl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141

    Article  CAS  PubMed  Google Scholar 

  11. Jonas P, Bischofberger J, Sandkühler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

    Article  CAS  PubMed  Google Scholar 

  12. Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y (2001) Region-specific developmental specialization of gaba-glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J Neurosci 21:7871–7880

    CAS  PubMed  Google Scholar 

  13. Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harvey RJ, Depner UB, Wässle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schütz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Müller U (2004) GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887

    Article  CAS  PubMed  Google Scholar 

  15. Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J (1996) Direct evidence of an extensive gabaergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 73:509–518

    Article  CAS  PubMed  Google Scholar 

  16. Kato G, Yasaka T, Katafuchi T, Furue H, Mizuno M, Iwamoto Y, Yoshimura M (2006) Direct gabaergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J Neurosci 26:1787–1794

    Article  CAS  PubMed  Google Scholar 

  17. Hossaini M, Goos JA, Kohli SK, Holstege JC (2012) Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection. PLoS ONE 7:e35293

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beyer C, Roberts LA, Komisaruk BR (1985) Hyperalgesia induced by altered glycinergic activity at the spinal cord. Life Sci 37:875–882

    Article  CAS  PubMed  Google Scholar 

  19. Yaksh TL (1989) Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 37:111–123

    Article  CAS  PubMed  Google Scholar 

  20. Ishikawa T, Marsala M, Sakabe T, Yaksh TL (2000) Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABAA receptor antagonist. Neuroscience 95:781–786

    Article  CAS  PubMed  Google Scholar 

  21. Hossaini M, Duraku LS, Sarac C, Jongen JL, Holstege JC (2010) Differential distribution of activated spinal neurons containing glycine and/or GABA and expressing c-fos in acute and chronic pain models. Pain 151:356–365

    Article  CAS  PubMed  Google Scholar 

  22. Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu Z, Marell PS, Seal RP (2015) Dorsal horn circuits for persistent mechanical pain. Neuron 87:797–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    Article  CAS  PubMed  Google Scholar 

  24. Müller F, Heinke B, Sandkühler J (2003) Reduction of glycine receptor-mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation. Neuroscience 122:799–805

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ (2011) Epigenetic suppression of gad65 expression mediates persistent pain. Nat Med 17:1448–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeilhofer HU, Wildner H, Yévenes GE (2012) Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 92:193–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU (2002) PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci 5:34–40

    Article  CAS  PubMed  Google Scholar 

  28. Reinold H, Ahmadi S, Depner UB, Layh B, Heindl C, Hamza M, Pahl A, Brune K, Narumiya S, Müller U, Zeilhofer HU (2005) Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J Clin Invest 115:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acuña MA, Yévenes GE, Ralvenius WT, Benke D, Di Lio A, Lara CO, Muñoz B, Burgos CF, Moraga-Cid G, Corringer PJ, Zeilhofer HU (2016) Phosphorylation state-dependent modulation of spinal glycine receptors alleviates inflammatory pain. J Clin Invest 126:2547–2560

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ (2002) Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22:6724–6731

    CAS  PubMed  Google Scholar 

  31. Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ (2005) Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 25:7317–7323

    Article  CAS  PubMed  Google Scholar 

  32. Imlach WL, Bhola RF, Mohammadi SA, Christie MJ (2016) Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci Rep 6:37104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy J-M, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451:330–334

    Article  CAS  PubMed  Google Scholar 

  34. Di Lio A, Benke D, Besson M, Desmeules J, Daali Y, Wang ZJ, Edwankar R, Cook JM, Zeilhofer HU (2011) HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain. Neuropharmacology 60:626–632

    Article  PubMed  CAS  Google Scholar 

  35. Ralvenius WT, Benke D, Acuña MA, Rudolph U, Zeilhofer HU (2015) Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun 6:6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA (2004) Analysis of the set of GABAA receptor genes in the human genome. J Biol Chem 279:41422–41435

    Article  CAS  PubMed  Google Scholar 

  37. Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The & #x03B2; subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45:727–739

    Article  CAS  PubMed  Google Scholar 

  38. Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401–2409

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haverkamp S, Müller U, Zeilhofer HU, Harvey RJ, Wässle H (2004) Diversity of glycine receptors in the mouse retina: localization of the α2 subunit. J Comp Neurol 477:399–411

    Article  CAS  PubMed  Google Scholar 

  40. Jonsson S, Kerekes N, Hyytia P, Ericson M, Soderpalm B (2009) Glycine receptor expression in the forebrain of male AA/ANA rats. Brain Res 1305(Suppl):S27–S36

    Article  CAS  PubMed  Google Scholar 

  41. Jonsson S, Morud J, Pickering C, Adermark L, Ericson M, Soderpalm B (2012) Changes in glycine receptor subunit expression in forebrain regions of the wistar rat over development. Brain Res 1446:12–21

    Article  CAS  PubMed  Google Scholar 

  42. Young-Pearse TL, Ivic L, Kriegstein AR, Cepko CL (2006) Characterization of mice with targeted deletion of glycine receptor α2. Mol Cell Biol 26:5728–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Avila A, Vidal PM, Dear TN, Harvey RJ, Rigo JM, Nguyen L (2013) Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Rep 4:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morelli G, Avila A, Ravanidis S, Aourz N, Neve RL, Smolders I, Harvey RJ, Rigo JM, Nguyen L, Brone B (2017) Cerebral cortical circuitry formation requires functional glycine receptors. Cereb Cortex 27:1863–1877

    PubMed  Google Scholar 

  45. Pilorge M, Fassier C, Le Corronc H, Potey A, Bai J, De Gois S, Delaby E, Assouline B, Guinchat V, Devillard F, Delorme R, Nygren G, Rastam M, Meier JC, Otani S, Cheval H, James VM, Topf M, Dear TN, Gillberg C, Leboyer M, Giros B, Gautron S, Hazan J, Harvey RJ, Legendre P, Betancur C (2016) Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Mol Psychiatry 21:936–945

    Article  CAS  PubMed  Google Scholar 

  46. Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15:563–572

    Article  CAS  PubMed  Google Scholar 

  47. Sola M, Bavro VN, Timmins J, Franz T, Ricard-Blum S, Schoehn G, Ruigrok RW, Paarmann I, Saiyed T, O’Sullivan GA, Schmitt B, Betz H, Weissenhorn W (2004) Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J 23:2510–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411:587–590

    Article  CAS  PubMed  Google Scholar 

  49. Jeong HJ, Jang IS, Moorhouse AJ, Akaike N (2003) Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons. J Physiol 550:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiong W, Cheng K, Cui T, Godlewski G, Rice KC, Xu Y, Zhang L (2011) Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol 7:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, Guan Y, Pan HL, Ren K, Xu Y, Zhang L (2012) Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J Exp Med 209:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leuwer M, O’Neill P, Berry N, Pidathala C, Wells A (2016) Pharmacologically active compounds. In: Patent application number: PCT/GB2014/053838

  53. Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, Lehto SG, Luther JA, Matson DJ, McDonough SI, Michelsen K, Plant MH, Schneider S, Simard JR, Teffera Y, Yi S, Zhang M, DiMauro EF, Gingras J (2017) Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Nat Struct Mol Biol 24:108–113

    Article  PubMed  CAS  Google Scholar 

  54. Mitchell K, Spike RC, Todd AJ (1993) An immunocytochemical study of glycine receptor and GABA in laminae I–III of rat spinal dorsal horn. J Neurosci 13:2371–2381

    CAS  PubMed  Google Scholar 

  55. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing. Nat Neurosci 18:145–153

    Article  CAS  PubMed  Google Scholar 

  56. Bae JY, Mah W, Rah JC, Park SK, Bae YC (2016) Expression of glycine receptor α3 in the rat trigeminal neurons and central boutons in the brainstem. Brain Struct Funct 221:4601–4613

    Article  CAS  PubMed  Google Scholar 

  57. Hösl K, Reinold H, Harvey RJ, Müller U, Narumiya S, Zeilhofer HU (2006) Spinal prostaglandin e receptors of the EP2 subtype and the glycine receptor α3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection. Pain 126:46–53

    Article  PubMed  CAS  Google Scholar 

  58. Adams RH, Sato K, Shimada S, Tohyama M, Puschel AW, Betz H (1995) Gene structure and glial expression of the glycine transporter GlyT1 in embryonic and adult rodents. J Neurosci 15:2524–2532

    CAS  PubMed  Google Scholar 

  59. Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among cns cells. J Neurosci 15:3952–3969

    CAS  PubMed  Google Scholar 

  60. Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C (1995) Regional distribution and developmental variation of the glycine transporters GlyT1 and GlyT2 in the rat cns. Eur J Neurosci 7:1342–1352

    Article  CAS  PubMed  Google Scholar 

  61. Cubelos B, Gimenez C, Zafra F (2005) Localization of the GlyT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    Article  PubMed  Google Scholar 

  62. Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, Knuesel I, Benke D, Feldon J, Möhler H, Boison D (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci 26:3169–3181

    Article  CAS  PubMed  Google Scholar 

  63. Eulenburg V, Retiounskaia M, Papadopoulos T, Gomeza J, Betz H (2010) Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice. Glia 58:1066–1073

    Article  PubMed  Google Scholar 

  64. Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szoke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796

    Article  CAS  PubMed  Google Scholar 

  65. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    Article  CAS  PubMed  Google Scholar 

  66. Hanuska A, Szenasi G, Albert M, Koles L, Varga A, Szabo A, Matyus P, Harsing LG Jr (2016) Some operational characteristics of glycine release in rat retina: the role of reverse mode operation of glycine transporter type-1 (GlyT-1) in ischemic conditions. Neurochem Res 41:73–85

    Article  CAS  PubMed  Google Scholar 

  67. Hashimoto K (2011) Glycine transporter-1: a new potential therapeutic target for schizophrenia. Curr Pharm Des 17:112–120

    Article  CAS  PubMed  Google Scholar 

  68. Singer P, Dubroqua S, Yee BK (2015) Inhibition of glycine transporter 1: the yellow brick road to new schizophrenia therapy? Curr Pharm Des 21:3771–3787

    Article  CAS  PubMed  Google Scholar 

  69. Bugarski-Kirola D, Iwata N, Sameljak S, Reid C, Blaettler T, Millar L, Marques TR, Garibaldi G, Kapur S (2016) Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the searchlyte clinical trial programme. Lancet Psychiatry 3:1115–1128

    Article  PubMed  Google Scholar 

  70. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, vGAT, localizes to synaptic vesicles in sets of glycinergic as well as gabaergic neurons. J Neurosci 18:9733–9750

    CAS  PubMed  Google Scholar 

  71. Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50:575–587

    Article  CAS  PubMed  Google Scholar 

  72. Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40:797–806

    Article  CAS  PubMed  Google Scholar 

  73. Bradaia A, Schlichter R, Trouslard J (2004) Role of glial and neuronal glycine transporters in the control of glycinergic and glutamatergic synaptic transmission in lamina X of the rat spinal cord. J Physiol 559:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanabe M, Takasu K, Yamaguchi S, Kodama D, Ono H (2008) Glycine transporter inhibitors as a potential therapeutic strategy for chronic pain with memory impairment. Anesthesiology 108:929–937

    Article  CAS  PubMed  Google Scholar 

  75. Jeong HJ, Vandenberg RJ, Vaughan CW (2010) N-Arachidonyl-glycine modulates synaptic transmission in superficial dorsal horn. Br J Pharmacol 161:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eckle VS, Antkowiak B (2013) ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn. Neuroscience 253:165–171

    Article  CAS  PubMed  Google Scholar 

  77. Hermanns H, Muth-Selbach U, Williams R, Krug S, Lipfert P, Werdehausen R, Braun S, Bauer I (2008) Differential effects of spinally applied glycine transporter inhibitors on nociception in a rat model of neuropathic pain. Neurosci Lett 445:214–219

    Article  CAS  PubMed  Google Scholar 

  78. Dohi T, Morita K, Kitayama T, Motoyama N, Morioka N (2009) Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain. Pharmacol Ther 123:54–79

    Article  CAS  PubMed  Google Scholar 

  79. Barthel F, Urban A, Schlosser L, Eulenburg V, Werdehausen R, Brandenburger T, Aragon C, Bauer I, Hermanns H (2014) Long-term application of glycine transporter inhibitors acts antineuropathic and modulates spinal N-methyl-d-aspartate receptor subunit NR-1 expression in rats. Anesthesiology 121:160–169

    Article  CAS  PubMed  Google Scholar 

  80. Motoyama N, Morita K, Shiraishi S, Kitayama T, Kanematsu T, Uezono Y, Dohi T (2014) Relief of cancer pain by glycine transporter inhibitors. Anesth Analg 119:988–995

    Article  CAS  PubMed  Google Scholar 

  81. Morita K, Motoyama N, Kitayama T, Morioka N, Kifune K, Dohi T (2008) Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J Pharmacol Exp Ther 326:633–645

    Article  CAS  PubMed  Google Scholar 

  82. Haranishi Y, Hara K, Terada T, Nakamura S, Sata T (2010) The antinociceptive effect of intrathecal administration of glycine transporter-2 inhibitor ALX1393 in a rat acute pain model. Anesth Analg 110:615–621

    Article  CAS  PubMed  Google Scholar 

  83. Nishikawa Y, Sasaki A, Kuraishi Y (2010) Blockade of glycine transporter (GlyT) 2, but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain. J Pharmacol Sci 112:352–360

    Article  CAS  PubMed  Google Scholar 

  84. Yoshikawa S, Oguchi T, Funahashi Y, de Groat WC, Yoshimura N (2012) Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur Urol 62:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mingorance-Le Meur A, Ghisdal P, Mullier B, De Ron P, Downey P, Van Der Perren C, Declercq V, Cornelis S, Famelart M, Van Asperen J, Jnoff E, Courade JP (2013) Reversible inhibition of the glycine transporter GlyT2 circumvents acute toxicity while preserving efficacy in the treatment of pain. Br J Pharmacol 170:1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Omori Y, Nakajima M, Nishimura K, Takahashi E, Arai T, Akahira M, Suzuki T, Kainoh M (2015) Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain. J Pharmacol Sci 127:377–381

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi Y, Hara K, Haranishi Y, Terada T, Obara G, Sata T (2015) Antinociceptive effect of intracerebroventricular administration of glycine transporter-2 inhibitor ALX1393 in rat models of inflammatory and neuropathic pain. Pharmacol Biochem Behav 130:46–52

    Article  CAS  PubMed  Google Scholar 

  88. Harvey RJ, Yee BK (2013) Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 12:866–885

    Article  CAS  PubMed  Google Scholar 

  89. Carland JE, Handford CA, Ryan RM, Vandenberg RJ (2014) Lipid inhibitors of high affinity glycine transporters: identification of a novel class of analgesics. Neurochem Int 73:211–216

    Article  CAS  PubMed  Google Scholar 

  90. Vandenberg RJ, Ryan RM, Carland JE, Imlach WL, Christie MJ (2014) Glycine transport inhibitors for the treatment of pain. Trends Pharmacol Sci 35:423–430

    Article  CAS  PubMed  Google Scholar 

  91. Crestani F, Low K, Keist R, Mandelli M, Möhler H, Rudolph U (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445

    Article  CAS  PubMed  Google Scholar 

  92. Pierrefiche O, Schwarzacher SW, Bischoff AM, Richter DW (1998) Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo. J Physiol 509(Pt 1):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sherman D, Worrell JW, Cui Y, Feldman JL (2015) Optogenetic perturbation of prebotzinger complex inhibitory neurons modulates respiratory pattern. Nat Neurosci 18:408–414

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nigro MA, Lim HC (1992) Hyperekplexia and sudden neonatal death. Pediatr Neurol 8:221–225

    Article  CAS  PubMed  Google Scholar 

  95. Giacoia GP, Ryan SG (1994) Hyperekplexia associated with apnea and sudden infant death syndrome. Arch Pediatr Adolesc Med 148:540–543

    Article  CAS  PubMed  Google Scholar 

  96. Manzke T, Niebert M, Koch UR, Caley A, Vogelgesang S, Hulsmann S, Ponimaskin E, Müller U, Smart TG, Harvey RJ, Richter DW (2010) Serotonin receptor 1A-modulated phosphorylation of glycine receptor α3 controls breathing in mice. J Clin Invest 120:4118–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu Q, Wong-Riley MT (2013) Postnatal development of glycine receptor subunits α1, α2, α3, and β immunoreactivity in multiple brain stem respiratory-related nuclear groups of the rat. Brain Res 1538:1–16

    Article  CAS  PubMed  Google Scholar 

  98. Buckwalter MS, Cook SA, Davisson MT, White WF, Camper SA (1994) A frameshift mutation in the mouse α1 glycine receptor gene (glra1) results in progressive neurological symptoms and juvenile death. Hum Mol Genet 3:2025–2030

    Article  CAS  PubMed  Google Scholar 

  99. Büsselberg D, Bischoff AM, Becker K, Becker CM, Richter DW (2001) The respiratory rhythm in mutant oscillator mice. Neurosci Lett 316:99–102

    Article  PubMed  Google Scholar 

  100. Woods JH, Katz JL, Winger G (1992) Benzodiazepines: use, abuse, and consequences. Pharmacol Rev 44:151–347

    CAS  PubMed  Google Scholar 

  101. Lüscher C (2013) Drug-evoked synaptic plasticity causing addictive behavior. J Neurosci 33:17641–17646

    Article  PubMed  CAS  Google Scholar 

  102. Molander A, Lof E, Stomberg R, Ericson M, Soderpalm B (2005) Involvement of accumbal glycine receptors in the regulation of voluntary ethanol intake in the rat. Alcohol Clin Exp Res 29:38–45

    Article  CAS  PubMed  Google Scholar 

  103. Molander A, Lido HH, Lof E, Ericson M, Soderpalm B (2007) The glycine reuptake inhibitor ORG 25935 decreases ethanol intake and preference in male wistar rats. Alcohol Alcohol 42:11–18

    Article  CAS  PubMed  Google Scholar 

  104. Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Lüscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jonsson S, Adermark L, Ericson M, Soderpalm B (2014) The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology 82:69–75

    Article  CAS  PubMed  Google Scholar 

  106. Mascia MP, Mihic SJ, Valenzuela CF, Schofield PR, Harris RA (1996) A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol Pharmacol 50:402–406

    CAS  PubMed  Google Scholar 

  107. Valenzuela CF, Cardoso RA, Wick MJ, Weiner JL, Dunwiddie TV, Harris RA (1998) Effects of ethanol on recombinant glycine receptors expressed in mammalian cell lines. Alcohol Clin Exp Res 22:1132–1136

    Article  CAS  PubMed  Google Scholar 

  108. Cui C, Koob GF (2017) Titrating tipsy targets: the neurobiology of low-dose alcohol. Trends Pharmacol Sci 38:556–568

    Article  CAS  PubMed  Google Scholar 

  109. Ye JH, Tao L, Ren J, Schaefer R, Krnjevic K, Liu PL, Schiller DA, McArdle JJ (2001) Ethanol potentiation of glycine-induced responses in dissociated neurons of rat ventral tegmental area. J Pharmacol Exp Ther 296:77–83

    CAS  PubMed  Google Scholar 

  110. Forstera B, Muñoz B, Lobo MK, Chandra R, Lovinger DM, Aguayo LG (2017) Presence of ethanol sensitive glycine receptors in medium spiny neurons in the mouse nucleus accumbens. J Physiol 595:5285–5300

    Article  CAS  PubMed  Google Scholar 

  111. Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Harris RA (2015) Glycine receptors containing & #x03B1;2 or & #x03B1;3 subunits regulate specific ethanol-mediated behaviors. J Pharmacol Exp Ther 353:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Han S, Gelernter J, Kranzler HR, Yang BZ (2013) Ordered subset linkage analysis based on admixture proportion identifies new linkage evidence for alcohol dependence in african-americans. Hum Genet 132:397–403

    Article  PubMed  Google Scholar 

  113. Zhang C, Nobles RD, McCall MA (2015) GlyRα2, not GlyRα3, modulates the receptive field surround of off retinal ganglion cells. Vis Neurosci 32:E026

    Article  PubMed  Google Scholar 

  114. Dlugaiczyk J, Hecker D, Neubert C, Buerbank S, Campanelli D, Becker CM, Betz H, Knipper M, Ruttiger L, Schick B (2016) Loss of glycine receptors containing the α3 subunit compromises auditory nerve activity, but not outer hair cell function. Hear Res 337:25–34

    Article  CAS  PubMed  Google Scholar 

  115. Tziridis K, Buerbank S, Eulenburg V, Dlugaiczyk J, Schulze H (2017) Deficit in acoustic signal-in-noise detection in glycine receptor α3 subunit knockout mice. Eur J Neurosci 45:581–586

    Article  PubMed  Google Scholar 

  116. Oskarsson V (1962) The effect of strychnine on visual acuity. Acta Pharmacol Toxicol 19:16–22

    Article  CAS  Google Scholar 

  117. Preibisch-Effenberger R, Knothe J (1965) Der Einfluß zentral wirkender Pharmaka auf die Wortverständlichkeit des Normalhörenden bei binauraler Testsprache. Z Laryngol Rhinol Otol Ihre Grenzgeb 44:619–630

    CAS  Google Scholar 

  118. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brozoski TJ, Caspary DM, Bauer CA, Richardson BD (2010) The effect of supplemental dietary taurine on tinnitus and auditory discrimination in an animal model. Hear Res 270:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paul J, Yévenes GE, Benke D, Di Lio A, Ralvenius WT, Witschi R, Scheurer L, Cook JM, Rudolph U, Fritschy JM, Zeilhofer HU (2014) Antihyperalgesia by α2-GABAA receptors occurs via a genuine spinal action and does not involve supraspinal sites. Neuropsychopharmacology 39:477–487

    Article  CAS  PubMed  Google Scholar 

  121. Asiedu M, Ossipov MH, Kaila K, Price TJ (2010) Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain 148:302–308

    Article  CAS  PubMed  Google Scholar 

  122. Herdon HJ, Godfrey FM, Brown AM, Coulton S, Evans JR, Cairns WJ (2001) Pharmacological assessment of the role of the glycine transporter GlyT-1 in mediating high-affinity glycine uptake by rat cerebral cortex and cerebellum synaptosomes. Neuropharmacology 41:88–96

    Article  CAS  PubMed  Google Scholar 

  123. Johnson JW, Ascher P (1987) Glycine potentiates the nmda response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  124. Ahmadi S, Muth-Selbach U, Lauterbach A, Lipfert P, Neuhuber WL, Zeilhofer HU (2003) Facilitation of spinal nmda receptor currents by spillover of synaptically released glycine. Science 300:2094–2097

    Article  CAS  PubMed  Google Scholar 

  125. Lim R, Hoang P, Berger AJ (2004) Blockade of glycine transporter-1 (GlyT-1) potentiates nmda receptor-mediated synaptic transmission in hypoglossal motorneurons. J Neurophysiol 92:2530–2537

    Article  CAS  PubMed  Google Scholar 

  126. Imamura Y, Ma CL, Pabba M, Bergeron R (2008) Sustained saturating level of glycine induces changes in NR2B-containing-NMDA receptor localization in the CA1 region of the hippocampus. J Neurochem 105:2454–2465

    Article  CAS  PubMed  Google Scholar 

  127. Yévenes GE, Zeilhofer HU (2011) Allosteric modulation of glycine receptors. Br J Pharmacol 164:224–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zeilhofer HU, Benke D, Yévenes GE (2012) Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 52:111–133

    Article  CAS  PubMed  Google Scholar 

  129. Pistis M, Belelli D, Peters JA, Lambert JJ (1997) The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in xenopus laevis oocytes: a comparative study. Br J Pharmacol 122:1707–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Krasowski MD, Harrison NL (1999) General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55:1278–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sonner JM, Zhang Y, Stabernack C, Abaigar W, Xing Y, Laster MJ (2003) GABAA receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg 96:706–712

    CAS  PubMed  Google Scholar 

  132. Grasshoff C, Antkowiak B (2004) Propofol and sevoflurane depress spinal neurons in vitro via different molecular targets. Anesthesiology 101:1167–1176

    Article  CAS  PubMed  Google Scholar 

  133. Nguyen HT, Li KY, daGraca RL, Delphin E, Xiong M, Ye JH (2009) Behavior and cellular evidence for propofol-induced hypnosis involving brain glycine receptors. Anesthesiology 110:326–332

    CAS  PubMed  PubMed Central  Google Scholar 

  134. de la Roche J, Leuwer M, Krampfl K, Haeseler G, Dengler R, Buchholz V, Ahrens J (2012) 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors. BMC neurology 12:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Eckle VS, Grasshoff C, Mirakaj V, O’Neill PM, Berry NG, Leuwer M, Antkowiak B (2014) 4-Bromopropofol decreases action potential generation in spinal neurons by inducing a glycine receptor-mediated tonic conductance. Br J Pharmacol 171:5790–5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Germann AL, Shin DJ, Manion BD, Edge CJ, Smith EH, Franks NP, Evers AS, Akk G (2016) Activation and modulation of recombinant glycine and GABAA receptors by 4-halogenated analogues of propofol. Br J Pharmacol 173:3110–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Krasowski MD, Jenkins A, Flood P, Kung AY, Hopfinger AJ, Harrison NL (2001) General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of γ-aminobutyric acid GABA current at the GABAA receptor but not with lipid solubility. J Pharmacol Exp Ther 297:338–351

    CAS  PubMed  Google Scholar 

  138. Ahrens J, Leuwer M, de la Roche J, Foadi N, Krampfl K, Haeseler G (2009) The non-anaesthetic propofol analogue 2,6-di-tert-butylphenol fails to modulate GABAA receptor function. Pharmacology 83:95–98

    Article  CAS  PubMed  Google Scholar 

  139. Ahrens J, Haeseler G, Leuwer M, Mohammadi B, Krampfl K, Dengler R, Bufler J (2004) 2,6 Di-tert-butylphenol, a nonanesthetic propofol analog, modulates α1β glycine receptor function in a manner distinct from propofol. Anesth Analg 99:91–96

    Article  CAS  PubMed  Google Scholar 

  140. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1β-mediated induction of COX-2 in the cns contributes to inflammatory pain hypersensitivity. Nature 410:471–475

    Article  CAS  PubMed  Google Scholar 

  141. Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC Jr, Andersen OS, Goldstein PA, Flood PD (2013) HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J Pharmacol Exp Ther 345:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chesnoy-Marchais D (1996) Potentiation of chloride responses to glycine by three 5-HT3 antagonists in rat spinal neurones. Br J Pharmacol 118:2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maksay G (1998) Bidirectional allosteric modulation of strychnine-sensitive glycine receptors by tropeines and 5-HT3 serotonin receptor ligands. Neuropharmacology 37:1633–1641

    Article  CAS  PubMed  Google Scholar 

  144. Supplisson S, Chesnoy-Marchais D (2000) Glycine receptor β subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol Pharmacol 58:763–770

    Article  CAS  PubMed  Google Scholar 

  145. Maksay G, Nemes P, Biro T (2004) Synthesis of tropeines and allosteric modulation of ionotropic glycine receptors. J Med Chem 47:6384–6391

    Article  CAS  PubMed  Google Scholar 

  146. Yang Z, Ney A, Cromer BA, Ng HL, Parker MW, Lynch JW (2007) Tropisetron modulation of the glycine receptor: femtomolar potentiation and a molecular determinant of inhibition. J Neurochem 100:758–769

    Article  CAS  PubMed  Google Scholar 

  147. Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2006) Δ9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69:991–997

    CAS  PubMed  Google Scholar 

  148. Xiong W, Wu X, Li F, Cheng K, Rice KC, Lovinger DM, Zhang L (2012) A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J Neurosci 32:5200–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, Li DP, Homanics GE, Peever J, Rice KC, Wu LG, Pan HL, Zhang L (2014) Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci 17:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ahrens J, Demir R, Leuwer M, de la Roche J, Krampfl K, Foadi N, Karst M, Haeseler G (2009) The nonpsychotropic cannabinoid cannabidiol modulates and directly activates α-1 and α-1-β glycine receptor function. Pharmacology 83:217–222

    Article  CAS  PubMed  Google Scholar 

  151. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    Article  CAS  PubMed  Google Scholar 

  152. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  CAS  PubMed  Google Scholar 

  153. Hruskova B, Trojanova J, Kulik A, Kralikova M, Pysanenko K, Bures Z, Syka J, Trussell LO, Turecek R (2012) Differential distribution of glycine receptor subtypes at the rat calyx of held synapse. J Neurosci 32:17012–17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wells MM, Tillman TS, Mowrey DD, Sun T, Xu Y, Tang P (2015) Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. J Med Chem 58:2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jin GL, Su YP, Liu M, Xu Y, Yang J, Liao KJ, Yu CX (2014) Medicinal plants of the genus gelsemium (gelsemiaceae, gentianales)—a review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol 152:33–52

    Article  CAS  PubMed  Google Scholar 

  156. Zhang JY, Gong N, Huang JL, Guo LC, Wang YX (2013) Gelsemine, a principal alkaloid from gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain 154:2452–2462

    Article  CAS  PubMed  Google Scholar 

  157. Lara CO, Murath P, Munoz B, Marileo AM, Martin LS, San Martin VP, Burgos CF, Mariqueo TA, Aguayo LG, Fuentealba J, Godoy P, Guzman L, Yévenes GE (2016) Functional modulation of glycine receptors by the alkaloid gelsemine. Br J Pharmacol 173:2263–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kiuru P, D’Auria MV, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1234–1246

    Article  CAS  PubMed  Google Scholar 

  159. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family irciniidae. Bioorg Med Chem 18:2912–2919

    Article  CAS  PubMed  Google Scholar 

  160. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Xiao X, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2013) Sesterterpene glycinyl-lactams: a new class of glycine receptor modulator from australian marine sponges of the genus psammocinia. Org Biomol Chem 11:4695–4701

    Article  CAS  PubMed  Google Scholar 

  161. Balansa W, Islam R, Gilbert DF, Fontaine F, Xiao X, Zhang H, Piggott AM, Lynch JW, Capon RJ (2013) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425

    Article  CAS  PubMed  Google Scholar 

  162. Stead C, Brown A, Adams C, Nickolls SJ, Young G, Kammonen J, Pryde D, Cawkill D (2016) Identification of positive allosteric modulators of glycine receptors from a high-throughput screen using a fluorescent membrane potential assay. J Biomol Screen 21:1042–1053

    Article  CAS  PubMed  Google Scholar 

  163. Bregman H, Simard JR, Andrews KL, Ayube S, Chen H, Gunaydin H, Guzman-Perez A, Hu J, Huang L, Huang X, Krolikowski PH, Lehto SG, Lewis RT, Michelsen K, Pegman P, Plant MH, Shaffer PL, Teffera Y, Yi S, Zhang M, Gingras J, DiMauro EF (2017) The discovery and hit-to-lead optimization of tricyclic sulfonamides as potent and efficacious potentiators of glycine receptors. J Med Chem 60:1105–1125

    Article  CAS  PubMed  Google Scholar 

  164. Chakka N, Andrews K, Berry L, Bregman H, Gunaydin H, Huang L, Guzman-Perez A, Plant MH, Simard J, Gingras J, Dimauro EF (2017) Applications of parallel synthetic lead hopping and pharmacophore-based virtual screening in the discovery of efficient glycine receptor potentiators. Eur J Med Chem 137:63–75

    Article  CAS  PubMed  Google Scholar 

  165. Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ (2003) Selective loss of spinal gabaergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 104:229–239

    Article  PubMed  CAS  Google Scholar 

  166. Polgár E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111:144–150

    Article  PubMed  Google Scholar 

  167. Polgár E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I–III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 25:6658–6666

    Article  PubMed  CAS  Google Scholar 

  168. Moraga-Cid G, Yévenes GE, Schmalzing G, Peoples RW, Aguayo LG (2011) A single phenylalanine residue in the main intracellular loop of α1 γ-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology 115:464–473

    Article  PubMed  CAS  Google Scholar 

  169. Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    Article  CAS  PubMed  Google Scholar 

  170. Espejo-Porras F, Fernandez-Ruiz J, Pertwee RG, Mechoulam R, Garcia C (2013) Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology 75:155–163

    Article  CAS  PubMed  Google Scholar 

  171. Sparling BA, DiMauro EF (2017) Progress in the discovery of small molecule modulators of the cys-lool superfamily receptors. Bioorg Med Chem Lett 27:3207–3218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Carlos F. Burgos, University of Concepción, Chile) for help with the glycine receptor model shown in Fig. 5. The authors’ work on glycine receptors has been supported by grants from the Swiss National Science Foundation (116064 and 131093) to HUZ and the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1170252) to GEY. MAA and GEY have partially been supported through fellowships from the rare disease initiative Zurich (RADIZ) (MAA) and by the Forschungskredit of the University of Zurich (GEY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Ulrich Zeilhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeilhofer, H.U., Acuña, M.A., Gingras, J. et al. Glycine receptors and glycine transporters: targets for novel analgesics?. Cell. Mol. Life Sci. 75, 447–465 (2018). https://doi.org/10.1007/s00018-017-2622-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2622-x

Keywords

Navigation