Skip to main content
Log in

Integrin signaling in atherosclerosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kingsley K et al (2002) ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochem Biophys Res Commun 293(3):1000–1006

    Article  CAS  PubMed  Google Scholar 

  2. Chahine MN et al (2009) Oxidized LDL affects smooth muscle cell growth through MAPK-mediated actions on nuclear protein import. J Mol Cell Cardiol 46(3):431–441

    Article  CAS  PubMed  Google Scholar 

  3. Orr AW et al (2009) Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 29(2):225–231

    Article  CAS  PubMed  Google Scholar 

  4. Autieri MV (2012) Pro- and anti-inflammatory cytokine networks in atherosclerosis. ISRN Vasc Med 2012:17

    Google Scholar 

  5. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801

    Article  CAS  PubMed  Google Scholar 

  6. Stary HC et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374

  7. Virmani R et al (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–C18

    Article  CAS  PubMed  Google Scholar 

  8. Libby P (2005) The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol 46(7):1225–1228

    Article  PubMed  Google Scholar 

  9. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yurdagul A Jr. et al (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295

    Article  CAS  PubMed  Google Scholar 

  11. Yurdagul A Jr., Orr AW (2016) Blood brothers: hemodynamics and cell-matrix interactions in endothelial function. Antioxid Redox Signal 25(7):415–434

    Article  CAS  PubMed  Google Scholar 

  12. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  13. Ross TD et al (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25(5):613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002(119):PE7

    PubMed  Google Scholar 

  15. Ley K et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

  16. Shattil SJ, Ginsberg MH, Brugge JS (1994) Adhesive signaling in platelets. Curr Opin Cell Biol 6(5):695–704

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz MA (2001) Integrin signaling revisited. Trends Cell Biol 11(12):466–470

    Article  CAS  PubMed  Google Scholar 

  18. Humphries JD et al (2015) Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 25(7):388–397

    Article  CAS  PubMed  Google Scholar 

  19. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orr AW et al (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20

    Article  CAS  PubMed  Google Scholar 

  21. Kanchanawong P et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Byron A et al (2012) Proteomic analysis of alpha4beta1 integrin adhesion complexes reveals alpha-subunit-dependent protein recruitment. Proteomics 12(13):2107–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schiller HB et al (2013) beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15(6):625–636

    Article  CAS  PubMed  Google Scholar 

  24. Kuo JC et al (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13(4):383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robertson J et al (2015) Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6:6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wickstrom SA et al (2010) The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase!. EMBO J 29(2):281–291

    Article  PubMed  CAS  Google Scholar 

  27. Kim C, Ye F, Ginsberg MH (2011) Regulation of integrin activation. Annu Rev Cell Dev Biol 27:321–345

    Article  CAS  PubMed  Google Scholar 

  28. Ye F, Snider AK, Ginsberg MH (2014) Talin and kindlin: the one-two punch in integrin activation. Front Med 8(1):6–16

    Article  PubMed  Google Scholar 

  29. Jalali S et al (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98(3):1042–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tzima E et al (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Orr AW et al (2005) The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 169(1):191–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hynes RO (2012) The evolution of metazoan extracellular matrix. J Cell Biol 196(6):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Short SM, Talbott GA, Juliano RL (1998) Integrin-mediated signaling events in human endothelial cells. Mol Biol Cell 9(8):1969–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J et al (2015) αβ3 integrins mediate flow-induced NF-κB activation, proinflammatory gene expression, and early atherogenic inflammation. Am J Pathol 185(9):2575–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feaver RE et al (2010) Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 106(11):1703–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Green J et al (2014) Flow patterns regulate hyperglycemia-induced subendothelial matrix remodeling during early atherogenesis. Atherosclerosis 232(2):277–284

    Article  CAS  PubMed  Google Scholar 

  37. Rohwedder I et al (2012) Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol Med 4(7):564–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy PA, Hynes RO (2014) Alternative splicing of endothelial fibronectin is induced by disturbed hemodynamics and protects against hemorrhage of the vessel wall. Arterioscler Thromb Vasc Biol 34(9):2042–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gelfand BD et al (2011) Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler Thromb Vasc Biol 31(7):1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Keulen JK et al (2007) Levels of extra domain A containing fibronectin in human atherosclerotic plaques are associated with a stable plaque phenotype. Atherosclerosis 195(1):e83–e91

    Article  PubMed  CAS  Google Scholar 

  41. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima Y et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18(5):842–851

    Article  CAS  PubMed  Google Scholar 

  43. Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107(3):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hajra L et al (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97(16):9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cybulsky MI et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tzima E et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431

    Article  CAS  PubMed  Google Scholar 

  47. Hahn C et al (2009) The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res 104(8):995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orr AW et al (2008) p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res 103(6):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orr AW et al (2007) Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J Cell Biol 176(5):719–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhullar IS et al (1998) Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 273(46):30544–30549

    Article  CAS  PubMed  Google Scholar 

  51. Sun X et al (2016) Activation of integrin alpha5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells. Proc Natl Acad Sci USA 113(3):769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yun S et al (2016) Interaction between integrin alpha5 and PDE4D regulates endothelial inflammatory signalling. Nat Cell Biol 18(10):1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yurdagul A Jr. et al (2014) α5β1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol 34(7):1362–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yurdagul A Jr. et al (2016) Oxidized LDL induces FAK-dependent RSK signaling to drive NF-kappaB activation and VCAM-1 expression. J Cell Sci 129:1580–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Funk SD, Yurdagul A Jr., Orr AW (2012) Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012:569654

    PubMed  PubMed Central  Google Scholar 

  56. Pober JS, Min W (2006) Endothelial cell dysfunction, injury and death. Handb Exp Pharmacol 176(Pt 2):135–156

    Article  CAS  Google Scholar 

  57. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459(6):793–806

    Article  CAS  PubMed  Google Scholar 

  58. Dimmeler S et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605

    Article  CAS  PubMed  Google Scholar 

  59. Boo YC et al (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem 277(5):3388–3396

    Article  CAS  PubMed  Google Scholar 

  60. Yang B, Rizzo V (2013) Shear stress activates eNOS at the endothelial apical surface through 1 containing integrins and caveolae. Cell Mol Bioeng 6(3):346–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Orr AW et al (2006) Matrix-specific suppression of integrin activation in shear stress signaling. Mol Biol Cell 17(11):4686–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yurdagul A Jr. et al (2013) Altered nitric oxide production mediates matrix-specific PAK2 and NF-kappaB activation by flow. Mol Biol Cell 24(3):398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Funk SD et al (2010) Matrix-specific protein kinase A signaling regulates p21-activated kinase activation by flow in endothelial cells. Circ Res 106(8):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mulligan-Kehoe MJ, Simons M (2014) Vasa vasorum in normal and diseased arteries. Circulation 129(24):2557–2566

    Article  PubMed  Google Scholar 

  65. Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10(7):387–396

    Article  CAS  PubMed  Google Scholar 

  66. Kwon HM et al (1998) Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 101(8):1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Langheinrich AC et al (2006) Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arterioscler Thromb Vasc Biol 26(2):347–352

    Article  CAS  PubMed  Google Scholar 

  68. Moulton KS et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Brien KD et al (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93(4):672–682

    Article  PubMed  Google Scholar 

  70. Moreno PR et al (2004) Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110(14):2032–2038

    Article  PubMed  Google Scholar 

  71. Virmani R et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061

    Article  CAS  PubMed  Google Scholar 

  72. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56

    Article  CAS  PubMed  Google Scholar 

  73. Mollmark JI et al (2012) Fibroblast growth factor-2 is required for vasa vasorum plexus stability in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 32(11):2644–2651

    Article  CAS  PubMed  Google Scholar 

  74. Hutter R et al (2013) Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res 6(4):558–569

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jaipersad AS et al (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63(1):1–11

    Article  CAS  PubMed  Google Scholar 

  76. Heistad DD, Marcus ML (1979) Role of vasa vasorum in nourishment of the aorta. Blood Vessels 16(5):225–238

    CAS  PubMed  Google Scholar 

  77. Moulton KS et al (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99(13):1726–1732

    Article  CAS  PubMed  Google Scholar 

  78. Drinane M et al (2009) The antiangiogenic activity of rPAI-1(23) inhibits vasa vasorum and growth of atherosclerotic plaque. Circ Res 104(3):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okamoto E et al (2001) Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 104(18):2228–2235

    Article  CAS  PubMed  Google Scholar 

  80. Khurana R et al (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110(16):2436–2443

    Article  PubMed  Google Scholar 

  81. Koga J et al (2009) Soluble Flt-1 gene transfer ameliorates neointima formation after wire injury in flt-1 tyrosine kinase-deficient mice. Arterioscler Thromb Vasc Biol 29(4):458–464

    Article  CAS  PubMed  Google Scholar 

  82. Ohtani K et al (2004) Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 110(16):2444–2452

    Article  CAS  PubMed  Google Scholar 

  83. Robinson SD, Hodivala-Dilke KM (2011) The role of beta3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 23(5):630–637

    Article  CAS  PubMed  Google Scholar 

  84. Rehn M et al (2001) Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 98(3):1024–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu X et al (2015) Angiogenesis inhibitor, endostar, prevents vasa vasorum neovascularization in a swine atherosclerosis model. J Atheroscler Thromb 22(10):1100–1112

    Article  PubMed  Google Scholar 

  86. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    Article  CAS  PubMed  Google Scholar 

  87. Kim S et al (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156(4):1345–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Orbay H et al (2013) Positron emission tomography imaging of atherosclerosis. Theranostics 3(11):894–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hodivala-Dilke KM et al (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103(2):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bader BL et al (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95(4):507–519

    Article  CAS  PubMed  Google Scholar 

  91. Reynolds LE et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8(1):27–34

    Article  CAS  PubMed  Google Scholar 

  92. van der Flier A et al (2010) Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development 137(14):2439–2449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Murphy PA, Begum S, Hynes RO (2015) Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors. PLoS One 10(3):e0120872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Berlin, C., et al (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74(1):185–195

  95. Libby P, Hansson GK (2015) Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116(2):307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnson-Tidey RR et al (1994) Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am J Pathol 144(5):952–961

    CAS  PubMed  PubMed Central  Google Scholar 

  97. van der Wal AC et al (1992) Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 141(6):1427–1433

    PubMed  PubMed Central  Google Scholar 

  98. Collins RG et al (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191(1):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong ZM, Brown AA, Wagner DD (2000) Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 101(19):2290–2295

    Article  CAS  PubMed  Google Scholar 

  100. Alon R et al (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 128(6):1243–1253

    Article  CAS  PubMed  Google Scholar 

  101. Zarbock A, Lowell CA, Ley K (2007) Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1. Immunity 26(6):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shamri R et al (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6(5):497–506

    Article  CAS  PubMed  Google Scholar 

  103. Boring L et al (1998) Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394(6696):894–897

    Article  CAS  PubMed  Google Scholar 

  104. Gu L et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2(2):275–281

    Article  CAS  PubMed  Google Scholar 

  105. Braunersreuther V et al (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27(2):373–379

    Article  CAS  PubMed  Google Scholar 

  106. Braunersreuther V et al (2008) A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 28(6):1090–1096

    Article  CAS  PubMed  Google Scholar 

  107. Combadiere C et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016

    Article  CAS  PubMed  Google Scholar 

  108. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111(3):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Funk SD, Orr AW (2013) Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res 67(1):42–52

    Article  CAS  PubMed  Google Scholar 

  110. Braun J et al (2011) Endothelial cell ephrinB2-dependent activation of monocytes in arteriosclerosis. Arterioscler Thromb Vasc Biol 31(2):297–305

    Article  CAS  PubMed  Google Scholar 

  111. Jellinghaus S et al (2013) Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells. Biochim Biophys Acta 1833(10):2201–2211

    Article  CAS  PubMed  Google Scholar 

  112. Saeki N et al (2015) EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces. Cell Adh Migr 9(6):469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Poitz DM et al (2015) EphrinB2/EphA4-mediated activation of endothelial cells increases monocyte adhesion. Mol Immunol 68(2 Pt C):648–656

    Article  CAS  PubMed  Google Scholar 

  114. Funk SD et al (2012) EphA2 activation promotes the endothelial cell inflammatory response: a potential role in atherosclerosis. Arterioscler Thromb Vasc Biol 32(3):686–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van Gils JM et al (2013) Endothelial expression of guidance cues in vessel wall homeostasis dysregulation under proatherosclerotic conditions. Arterioscler Thromb Vasc Biol 33(5):911–919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Nageh MF et al (1997) Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 17(8):1517–1520

    Article  CAS  PubMed  Google Scholar 

  117. Bourdillon MC et al (2000) ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(-/-)/ICAM-1(-/-)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol 20(12):2630–2635

    Article  CAS  PubMed  Google Scholar 

  118. Arnaout MA (2016) Biology and structure of leukocyte beta 2 integrins and their role in inflammation. F1000Res. doi:10.12688/f1000research.9415.1

    PubMed  PubMed Central  Google Scholar 

  119. Sadhu C et al (2007) CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity. J Leukoc Biol 81(6):1395–1403

    Article  CAS  PubMed  Google Scholar 

  120. Huo Y, Hafezi-Moghadam A, Ley K (2000) Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 87(2):153–159

    Article  CAS  PubMed  Google Scholar 

  121. Barringhaus KG et al (2004) Alpha4beta1 integrin (VLA-4) blockade attenuates both early and late leukocyte recruitment and neointimal growth following carotid injury in apolipoprotein E (−/−) mice. J Vasc Res 41(3):252–260

    Article  CAS  PubMed  Google Scholar 

  122. Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121(2):549–560

    CAS  PubMed  Google Scholar 

  123. Shih PT et al (1999) Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin. J Clin Invest 103(5):613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Merched A, Tollefson K, Chan L (2010) Beta2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice. Cardiovasc Res 85(4):853–863

    Article  CAS  PubMed  Google Scholar 

  125. Nie Q et al (1997) Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis. Lab Invest 77(5):469–482

    CAS  PubMed  Google Scholar 

  126. Kawamura A et al (2007) Apolipoprotein E interrupts interleukin-1beta signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27(7):1610–1617

    Article  CAS  PubMed  Google Scholar 

  127. Kubo N et al (2000) Leukocyte CD11b expression is not essential for the development of atherosclerosis in mice. J Lipid Res 41(7):1060–1066

    CAS  PubMed  Google Scholar 

  128. Wu H et al (2009) Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119(20):2708–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hogg N et al (1986) The p150, 95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur J Immunol 16(3):240–248

    Article  CAS  PubMed  Google Scholar 

  130. Blackford J et al (1996) A monoclonal antibody, 3/22, to rabbit CD11c which induces homotypic T cell aggregation: evidence that ICAM-1 is a ligand for CD11c/CD18. Eur J Immunol 26(3):525–531

    Article  CAS  PubMed  Google Scholar 

  131. Loike JD et al (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci USA 88(3):1044–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Foster GA et al (2015) CD11c/CD18 signals very late antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia. J Immunol 195(11):5380–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gower RM et al (2011) CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol 31(1):160–166

    Article  CAS  PubMed  Google Scholar 

  134. Han J et al (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16(18):1796–1806

    Article  CAS  PubMed  Google Scholar 

  135. Boulaftali Y et al (2016) CalDAG-GEFI deficiency reduces atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 36:792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moser M et al (2009) Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 15(3):300–305

    Article  CAS  PubMed  Google Scholar 

  137. Malinin NL et al (2009) A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 15(3):313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hyduk SJ et al (2011) Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. J Immunol 187(8):4360–4368

    Article  CAS  PubMed  Google Scholar 

  139. Becker HM et al (2013) Alpha1beta1 integrin-mediated adhesion inhibits macrophage exit from a peripheral inflammatory lesion. J Immunol 190(8):4305–4314

    Article  CAS  PubMed  Google Scholar 

  140. Antonov AS et al (2004) Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis. Am J Pathol 165(1):247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Prieto J, Eklund A, Patarroyo M (1994) Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cell Immunol 156(1):191–211

    Article  CAS  PubMed  Google Scholar 

  142. De Nichilo MO, Yamada KM (1996) Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. J Biol Chem 271(18):11016–11022

    Article  PubMed  Google Scholar 

  143. Ammon C et al (2000) Comparative analysis of integrin expression on monocyte-derived macrophages and monocyte-derived dendritic cells. Immunology 100(3):364–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schapira K et al (2005) Genetic deletion or antibody blockade of alpha1beta1 integrin induces a stable plaque phenotype in ApoE−/− mice. Arterioscler Thromb Vasc Biol 25(9):1917–1924

    Article  CAS  PubMed  Google Scholar 

  145. Lund SA et al., Osteopontin mediates macrophage chemotaxis via alpha(4) and alpha(9) integrins and survival via the alpha(4) integrin. J Cell Biochem, 2012

  146. Yakubenko VP, Yadav SP, Ugarova TP (2006) Integrin alphaDbeta2, an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 107(4):1643–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yakubenko VP et al (2008) The role of integrin alpha D beta2 (CD11d/CD18) in monocyte/macrophage migration. Exp Cell Res 314(14):2569–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lishko VK, Yakubenko VP, Ugarova TP (2003) The interplay between integrins alphaMbeta2 and alpha5beta1 during cell migration to fibronectin. Exp Cell Res 283(1):116–126

    Article  CAS  PubMed  Google Scholar 

  149. Yakubenko VP et al (2011) Alphambeta(2) integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. Circ Res 108(5):544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gray JL, Shankar R (1995) Down regulation of CD11b and CD18 expression in atherosclerotic lesion-derived macrophages. Am Surg 61(8):674-679 (discussion 679–80)

    Google Scholar 

  151. Zhi K et al (2014) Alpha4beta7 Integrin (LPAM-1) is upregulated at atherosclerotic lesions and is involved in atherosclerosis progression. Cell Physiol Biochem 33(6):1876–1887

    Article  CAS  PubMed  Google Scholar 

  152. Antonov AS et al (2011) AlphaVbeta3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-kappaB activation. J Cell Physiol 226(2):469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schneider JG et al (2007) Macrophage beta3 integrin suppresses hyperlipidemia-induced inflammation by modulating TNFalpha expression. Arterioscler Thromb Vasc Biol 27(12):2699–2706

    Article  CAS  PubMed  Google Scholar 

  154. Lacy-Hulbert A et al (2007) Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci USA 104(40):15823–15828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Poon IK et al (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Savill J et al (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343(6254):170–173

    Article  CAS  PubMed  Google Scholar 

  157. Hanayama R et al (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304(5674):1147–1150

    Article  CAS  PubMed  Google Scholar 

  158. Friggeri A et al (2010) HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am J Physiol Cell Physiol 299(6):C1267–C1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fan Z et al (2016) HMGB1: a promising therapeutic approach for atherosclerosis. Int J Cardiol 202:507–508

    Article  PubMed  Google Scholar 

  160. Wall VZ, Bornfeldt KE (2014) Arterial smooth muscle. Arterioscler Thromb Vasc Biol 34(10):2175–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hedin U et al (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107(1):307–319

    Article  CAS  PubMed  Google Scholar 

  162. Orr AW et al (2010) Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 47(2):168–180

    Article  PubMed  Google Scholar 

  163. Vengrenyuk Y et al (2015) Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 35(3):535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shankman LS et al (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Voss B, Rauterberg J (1986) Localization of collagen types I, III, IV and V, fibronectin and laminin in human arteries by the indirect immunofluorescence method. Pathol Res Pract 181(5):568–575

    Article  CAS  PubMed  Google Scholar 

  166. Moiseeva EP (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52(3):372–386

    Article  CAS  PubMed  Google Scholar 

  167. Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19(4):319–323

    Article  CAS  PubMed  Google Scholar 

  168. Obata H et al (1997) Smooth muscle cell phenotype-dependent transcriptional regulation of the alpha1 integrin gene. J Biol Chem 272(42):26643–26651

    Article  CAS  PubMed  Google Scholar 

  169. Cremona O et al (1994) The alpha6 and beta4 integrin subunits are expressed by smooth muscle cells of human small vessels: a new localization in mesenchymal cells. J Histochem Cytochem 42(9):1221–1228

    Article  CAS  PubMed  Google Scholar 

  170. Yao CC et al (1997) Functional expression of the alpha 7 integrin receptor in differentiated smooth muscle cells. J Cell Sci 110(Pt 13):1477–1487

    CAS  PubMed  Google Scholar 

  171. Wang L et al (2010) Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ Res 106(3):514–525

    Article  CAS  PubMed  Google Scholar 

  172. Welser JV et al (2007) Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling. Circ Res 101(7):672–681

    Article  CAS  PubMed  Google Scholar 

  173. Blindt R et al (2002) Expression patterns of integrins on quiescent and invasive smooth muscle cells and impact on cell locomotion. J Mol Cell Cardiol 34(12):1633–1644

    Article  CAS  PubMed  Google Scholar 

  174. Hoshiga M et al (1995) Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 77(6):1129–1135

    Article  CAS  PubMed  Google Scholar 

  175. van der Zee R et al (1998) Reduced intimal thickening following alpha(v)beta3 blockade is associated with smooth muscle cell apoptosis. Cell Adhes Commun 6(5):371–379

    Article  PubMed  Google Scholar 

  176. Janat MF, Argraves WS, Liau G (1992) Regulation of vascular smooth muscle cell integrin expression by transforming growth factor beta1 and by platelet-derived growth factor-BB. J Cell Physiol 151(3):588–595

    Article  CAS  PubMed  Google Scholar 

  177. Brown SL et al (1994) Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis. Cardiovasc Res 28(12):1815–1820

    Article  CAS  PubMed  Google Scholar 

  178. Liu J et al (2014) Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin. Int J Mol Med 33(5):1341–1347

    CAS  PubMed  Google Scholar 

  179. Yamamoto K et al (2005) Tenascin-C is an essential factor for neointimal hyperplasia after aortotomy in mice. Cardiovasc Res 65(3):737–742

    Article  CAS  PubMed  Google Scholar 

  180. Ishigaki T et al (2011) Tenascin-C enhances crosstalk signaling of integrin alphavbeta3/PDGFR-beta complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol 226(10):2617–2624

    Article  CAS  PubMed  Google Scholar 

  181. Choi ET et al (1994) Inhibition of neointimal hyperplasia by blocking alpha V beta 3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 19(1):125–134

    Article  CAS  PubMed  Google Scholar 

  182. Bishop GG et al (2001) Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103(14):1906–1911

    Article  CAS  PubMed  Google Scholar 

  183. Weng S et al (2003) Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc Natl Acad Sci USA 100(11):6730–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Panchatcharam M et al (2010) Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling. Int J Biochem Cell Biol 42(6):965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li G et al (2010) Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 208(2):358–365

    Article  CAS  PubMed  Google Scholar 

  186. Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540(1):1–21

    Article  CAS  PubMed  Google Scholar 

  187. Moiseeva EP et al (2003) Galectin-1 interacts with beta-1 subunit of integrin. Biochem Biophys Res Commun 310(3):1010–1016

    Article  CAS  PubMed  Google Scholar 

  188. Lee BH et al (2006) Betaig-h3 triggers signaling pathways mediating adhesion and migration of vascular smooth muscle cells through alphavbeta5 integrin. Exp Mol Med 38(2):153–161

    Article  CAS  PubMed  Google Scholar 

  189. Taylor JM et al (2001) Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells. Mol Cell Biol 21(5):1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Maile LA et al (2010) A monoclonal antibody against alphaVbeta3 integrin inhibits development of atherosclerotic lesions in diabetic pigs. Sci Transl Med 2(18):18ra11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Zheng B, Clemmons DR (1998) Blocking ligand occupancy of the alphaVbeta3 integrin inhibits insulin-like growth factor I signaling in vascular smooth muscle cells. Proc Natl Acad Sci USA 95(19):11217–11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hong Z et al (2012) Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res 96(1):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hong Z et al (2015) Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 10(3):e0119533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Kappert K et al (2000) Angiotensin II and PDGF-BB stimulate beta(1)-integrin-mediated adhesion and spreading in human VSMCs. Hypertension 35(1 Pt 2):255–261

    Article  CAS  PubMed  Google Scholar 

  195. Bunni MA et al (2011) Role of integrins in angiotensin II-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 300(3):C647–C656

    Article  CAS  PubMed  Google Scholar 

  196. Tamura K et al (2001) Synergistic interaction of integrin and angiotensin II in activation of extracellular signal-regulated kinase pathways in vascular smooth muscle cells. J Cardiovasc Pharmacol 38(Suppl 1):S59–S62

    Article  CAS  PubMed  Google Scholar 

  197. Montezano AC et al (2014) Angiotensin II and vascular injury. Curr Hypertens Rep 16(6):431

    Article  PubMed  CAS  Google Scholar 

  198. Schnapp LM et al (1998) Integrins inhibit angiotensin II-induced contraction in rat aortic rings. Regul Pept 77(1–3):177–183

    Article  CAS  PubMed  Google Scholar 

  199. Louis H et al (2007) Role of alpha1beta1-integrin in arterial stiffness and angiotensin-induced arterial wall hypertrophy in mice. Am J Physiol Heart Circ Physiol 293(4):H2597–H2604

    Article  CAS  PubMed  Google Scholar 

  200. Moraes JA et al (2015) Alpha1beta1 and integrin-linked kinase interact and modulate angiotensin II effects in vascular smooth muscle cells. Atherosclerosis 243(2):477–485

    Article  CAS  PubMed  Google Scholar 

  201. Brassard P et al (2006) Role of angiotensin type-1 and angiotensin type-2 receptors in the expression of vascular integrins in angiotensin II-infused rats. Hypertension 47(1):122–127

    Article  CAS  PubMed  Google Scholar 

  202. Li S et al (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via alpha2beta1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163(3):1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Polte TR, Naftilan AJ, Hanks SK (1994) Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem 55(1):106–119

    Article  CAS  PubMed  Google Scholar 

  204. Zhang F et al (2016) Angiotensin-(1–7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep 6:34621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Blaschke F et al (2002) Angiotensin II-augmented migration of VSMCs towards PDGF-BB involves Pyk2 and ERK 1/2 activation. Basic Res Cardiol 97(4):334–342

    Article  CAS  PubMed  Google Scholar 

  206. Taniyama Y et al (2003) Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 23(22):8019–8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ishida T et al (1999) Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest 103(6):789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zargham R, Pepin J, Thibault G (2007) Alpha8beta1 Integrin is up-regulated in the neointima concomitant with late luminal loss after balloon injury. Cardiovasc Pathol 16(4):212–220

    Article  CAS  PubMed  Google Scholar 

  209. Zargham R, Thibault G (2006) Alpha 8 integrin expression is required for maintenance of the smooth muscle cell differentiated phenotype. Cardiovasc Res 71(1):170–178

    Article  CAS  PubMed  Google Scholar 

  210. Zargham R, Thibault G (2005) Alpha8beta1 Integrin expression in the rat carotid artery: involvement in smooth muscle cell migration and neointima formation. Cardiovasc Res 65(4):813–822

    Article  CAS  PubMed  Google Scholar 

  211. Zargham R, Touyz RM, Thibault G (2007) Alpha 8 Integrin overexpression in de-differentiated vascular smooth muscle cells attenuates migratory activity and restores the characteristics of the differentiated phenotype. Atherosclerosis 195(2):303–312

    Article  CAS  PubMed  Google Scholar 

  212. Menendez-Castro C et al (2015) Under-expression of alpha8 integrin aggravates experimental atherosclerosis. J Pathol 236(1):5–16

    Article  CAS  PubMed  Google Scholar 

  213. Hou G et al (2000) Type VIII collagen stimulates smooth muscle cell migration and matrix metalloproteinase synthesis after arterial injury. Am J Pathol 156(2):467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Adiguzel E et al (2006) Migration and growth are attenuated in vascular smooth muscle cells with type VIII collagen-null alleles. Arterioscler Thromb Vasc Biol 26(1):56–61

    Article  CAS  PubMed  Google Scholar 

  215. Hollenbeck ST et al (2004) Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the alpha2beta1 integrin and PDGFbeta receptor. Biochem Biophys Res Commun 325(1):328–337

    Article  CAS  PubMed  Google Scholar 

  216. Chung CH et al (2009) The integrin alpha(2)beta(1) agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 156:846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lopes J et al (2013) Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. Am J Pathol 182(6):2241–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Pickering JG et al (2000) Alpha5beta1 integrin expression and luminal edge fibronectin matrix assembly by smooth muscle cells after arterial injury. Am J Pathol 156(2):453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24(6):389–399

    Article  CAS  PubMed  Google Scholar 

  220. Frontini MJ et al (2009) Lipid incorporation inhibits Src-dependent assembly of fibronectin and type I collagen by vascular smooth muscle cells. Circ Res 104(7):832–841

    Article  CAS  PubMed  Google Scholar 

  221. Cheng J et al (2007) Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1. J Biol Chem 282(47):34268–34275

    Article  CAS  PubMed  Google Scholar 

  222. Ikari Y, Yee KO, Schwartz SM (2000) Role of alpha5beta1 and alphavbeta3 integrins on smooth muscle cell spreading and migration in fibrin gels. Thromb Haemost 84(4):701–705

    CAS  PubMed  Google Scholar 

  223. Massberg S et al (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196(7):887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Belton OA et al (2003) Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 108(24):3017–3023

    Article  CAS  PubMed  Google Scholar 

  225. Gawaz M et al (1997) Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation 96(6):1809–1818

    Article  CAS  PubMed  Google Scholar 

  226. Evangelista V et al (2003) Role of P-selectin, beta2-integrins, and Src tyrosine kinases in mouse neutrophil-platelet adhesion. J Thromb Haemost 1(5):1048–1054

    Article  CAS  PubMed  Google Scholar 

  227. Neumann FJ et al (1999) Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction. J Am Coll Cardiol 34(5):1420–1426

    Article  CAS  PubMed  Google Scholar 

  228. Patko Z et al (2012) Roles of Mac-1 and glycoprotein IIb/IIIa integrins in leukocyte-platelet aggregate formation: stabilization by Mac-1 and inhibition by GpIIb/IIIa blockers. Platelets 23(5):368–375

    Article  CAS  PubMed  Google Scholar 

  229. Weber C, Springer TA (1997) Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 100(8):2085–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sreeramkumar V et al (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346(6214):1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. von Hundelshausen P et al (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103(13):1772–1777

    Article  Google Scholar 

  232. van Gils JM et al (2008) Transendothelial migration drives dissociation of plateletmonocyte complexes. Thromb Haemost 100(2):271–279

    PubMed  Google Scholar 

  233. Fernandez-Patron C et al (1999) Differential regulation of platelet aggregation by matrix metalloproteinases-9 and – 2. Thromb Haemost 82(6):1730–1735

    CAS  PubMed  Google Scholar 

  234. Sawicki G et al (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386(6625):616–619

    Article  CAS  PubMed  Google Scholar 

  235. May AE et al (2002) Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 106(16):2111–2117

    Article  CAS  PubMed  Google Scholar 

  236. Nannizzi-Alaimo L, Alves VL, Phillips DR (2003) Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation 107(8):1123–1128

    Article  CAS  PubMed  Google Scholar 

  237. Lievens D et al (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116(20):4317–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Simic D et al (2015) Blocking alpha5beta1 integrin attenuates sCD40L-mediated platelet activation. Clin Appl Thromb Hemost

  239. Santoro SA (1986) Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 46(6):913–920

    Article  CAS  PubMed  Google Scholar 

  240. Ruggeri ZM (2009) Platelet adhesion under flow. Microcirculation 16(1):58–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sims PJ et al (1989) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264(29):17049–17057

    CAS  PubMed  Google Scholar 

  242. Hughes PE, Pfaff M (1998) Integrin affinity modulation. Trends Cell Biol 8(9):359–364

    Article  CAS  PubMed  Google Scholar 

  243. Mastenbroek TG et al (2015) Acute and persistent platelet and coagulant activities in atherothrombosis. J Thromb Haemost 13(Suppl 1):S272–S280

  244. Hechler B, Gachet C Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 105(Suppl 1):S3–S12

  245. Goto S et al (2002) Involvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions. Circulation 106(2):266–272

    Article  CAS  PubMed  Google Scholar 

  246. Nesbitt WS et al (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673

    Article  CAS  PubMed  Google Scholar 

  247. Collins C et al (2014) Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 5:3984

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Kawamura A et al (2004) Increased expression of monocyte CD11a and intracellular adhesion molecule-1 in patients with initial atherosclerotic coronary stenosis. Circ J 68(1):6–10

    Article  CAS  PubMed  Google Scholar 

  249. Skinner MP, Raines EW, Ross R (1994) Dynamic expression of alpha 1 beta 1 and alpha 2 beta 1 integrin receptors by human vascular smooth muscle cells. Alpha 2 beta 1 integrin is required for chemotaxis across type I collagen-coated membranes. Am J Pathol 145(5):1070–1081

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (R01 HL098435 to A.W.O.), by an American Heart Association Grant-In-Aid (15GRNT25560056 to A.W.O.), an intramural Malcolm Feist Pre-doctoral Fellowship (to A.C.F.), and an American Heart Association Pre-doctoral Fellowship (17PRE33440111 to A.C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wayne Orr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finney, A.C., Stokes, K.Y., Pattillo, C.B. et al. Integrin signaling in atherosclerosis. Cell. Mol. Life Sci. 74, 2263–2282 (2017). https://doi.org/10.1007/s00018-017-2490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2490-4

Keywords

Navigation