Skip to main content
Log in

The role of Alu elements in the cis-regulation of RNA processing

Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  2. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    Article  CAS  PubMed  Google Scholar 

  4. Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J (2007) Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet TIG 23:158–161

    Article  CAS  PubMed  Google Scholar 

  5. Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    Article  CAS  PubMed  Google Scholar 

  6. Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fuhrman SA, Deininger PL, LaPorte P, Friedmann T, Geiduschek EP (1981) Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III. Nucleic Acids Res 9:6439–6456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Willis IM (1993) RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem 212:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA et al (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19:1516–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  PubMed  Google Scholar 

  13. Orgel LE, Crick FH, Sapienza C (1980) Selfish DNA. Nature 288:645–646

    Article  CAS  PubMed  Google Scholar 

  14. Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9:e1003504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9:e1003234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28:433–434

    Article  CAS  PubMed  Google Scholar 

  17. Hsu K, Chang DY, Maraia RJ (1995) Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 270:10179–10186

    Article  CAS  PubMed  Google Scholar 

  18. West N, Roy-Engel AM, Imataka H, Sonenberg N, Deininger P (2002) Shared protein components of SINE RNPs. J Mol Biol 321:423–432

    Article  CAS  PubMed  Google Scholar 

  19. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  20. Roy AM, West NC, Rao A, Adhikari P, Aleman C, Barnes AP, Deininger PL (2000) Upstream flanking sequences and transcription of SINEs. J Mol Biol 302:17–25

    Article  CAS  PubMed  Google Scholar 

  21. Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G (2007) Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol 8:R127

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Grover D, Mukerji M, Bhatnagar P, Kannan K, Brahmachari SK (2004) Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20:813–817

    Article  CAS  PubMed  Google Scholar 

  23. Kim TM, Jung YC, Rhyu MG (2004) Alu and L1 retroelements are correlated with the tissue extent and peak rate of gene expression, respectively. J Korean Med Sci 19:783–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ganapathi M, Srivastava P, Das Sutar SK, Kumar K, Dasgupta D, Pal Singh G, Brahmachari V, Brahmachari SK (2005) Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinform 6:126

    Article  CAS  Google Scholar 

  25. Eller CD, Regelson M, Merriman B, Nelson S, Horvath S, Marahrens Y (2007) Repetitive sequence environment distinguishes housekeeping genes. Gene 390:153–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shen S, Lin L, Cai JJ, Jiang P, Kenkel EJ, Stroik MR, Sato S, Davidson BL, Xing Y (2011) Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci USA 108:2837–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Xie H, Wang M, Bonaldo Mde F, Smith C, Rajaram V, Goldman S, Tomita T, Soares MB (2009) High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res 37:4331–4340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genom 7:133

    Article  CAS  Google Scholar 

  29. Babich V, Aksenov N, Alexeenko V, Oei SL, Buchlow G, Tomilin N (1999) Association of some potential hormone response elements in human genes with the Alu family repeats. Gene 239:341–349

    Article  CAS  PubMed  Google Scholar 

  30. Le Goff W, Guerin M, Chapman MJ, Thillet J (2003) A CYP7A promoter binding factor site and Alu repeat in the distal promoter region are implicated in regulation of human CETP gene expression. J Lipid Res 44:902–910

    Article  PubMed  CAS  Google Scholar 

  31. Norris J, Fan D, Aleman C, Marks JR, Futreal PA, Wiseman RW, Iglehart JD, Deininger PL, McDonnell DP (1995) Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J Biol Chem 270:22777–22782

    Article  CAS  PubMed  Google Scholar 

  32. Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV (2004) Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics 83:873–882

    Article  CAS  PubMed  Google Scholar 

  33. Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF (1996) An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 271:14412–14420

    Article  CAS  PubMed  Google Scholar 

  34. Vansant G, Reynolds WF (1995) The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc Natl Acad Sci USA 92:8229–8233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Makalowski W, Mitchell GA, Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet TIG 10:188–193

    Article  CAS  PubMed  Google Scholar 

  36. Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12:1060–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chen C, Ara T, Gautheret D (2009) Using Alu elements as polyadenylation sites: a case of retroposon exaptation. Mol Biol Evol 26:327–334

    Article  CAS  PubMed  Google Scholar 

  38. Roy-Engel AM, El-Sawy M, Farooq L, Odom GL, Perepelitsa-Belancio V, Bruch H, Oyeniran OO, Deininger PL (2005) Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res 110:365–371

    Article  CAS  PubMed  Google Scholar 

  39. Makalowski W (2000) Genomic scrap yard: how genomes utilize all that junk. Gene 259:61–67

    Article  CAS  PubMed  Google Scholar 

  40. Yulug IG, Yulug A, Fisher EM (1995) The frequency and position of Alu repeats in cDNAs, as determined by database searching. Genomics 27:544–548

    Article  CAS  PubMed  Google Scholar 

  41. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet TIG 17:619–621

    Article  CAS  PubMed  Google Scholar 

  42. Wu M, Li L, Sun Z (2007) Transposable element fragments in protein-coding regions and their contributions to human functional proteins. Gene 401:165–171

    Article  CAS  PubMed  Google Scholar 

  43. Lev-Maor G, Sorek R, Shomron N, Ast G (2003) The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300:1288–1291

    Article  CAS  PubMed  Google Scholar 

  44. Ram O, Schwartz S, Ast G (2008) Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 28:3513–3525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell 14:221–231

    Article  CAS  PubMed  Google Scholar 

  46. Gotea V, Makalowski W (2006) Do transposable elements really contribute to proteomes? Trends Genet TIG 22:260–267

    Article  CAS  PubMed  Google Scholar 

  47. Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gerber A, O’Connell MA, Keller W (1997) Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3:453–463

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Slavov D, Crnogorac-Jurcevic T, Clark M, Gardiner K (2000) Comparative analysis of the DRADA A-to-I RNA editing gene from mammals, pufferfish and zebrafish. Gene 250:53–60

    Article  CAS  PubMed  Google Scholar 

  50. Agranat L, Sperling J, Sperling R (2010) A novel tissue-specific alternatively spliced form of the A-to-I RNA editing enzyme ADAR2. RNA Biol 7:253–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Vorechovsky I (2010) Transposable elements in disease-associated cryptic exons. Hum Genet 127:135–154

    Article  CAS  PubMed  Google Scholar 

  52. Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, Reyes A, Anders S, Luscombe NM, Ule J (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:453–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Robertson HD, Dickson E (1984) Structure and distribution of Alu family sequences or their analogs within heterogeneous nuclear RNA of HeLa, KB, and L cells. Mol Cell Biol 4:310–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E et al (2014) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bass BL, Weintraub H (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607–613

    Article  CAS  PubMed  Google Scholar 

  56. Bass BL, Nishikura K, Keller W, Seeburg PH, Emeson RB, O’Connell MA, Samuel CE, Herbert A (1997) A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3:947–949

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K (1994) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269:13480–13489

    CAS  PubMed  Google Scholar 

  58. O’Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15:1389–1397

    Article  PubMed Central  PubMed  Google Scholar 

  59. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379:460–464

    Article  CAS  PubMed  Google Scholar 

  60. Basilio C, Wahba AJ, Lengyel P, Speyer JF, Ochoa S (1962) Synthetic polynucleotides and the amino acid code. V. Proc Natl Acad Sci USA 48:613–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213

    Article  CAS  PubMed  Google Scholar 

  62. Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13:5701–5711

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Wahlstedt H, Öhman M (2011) Site-selective versus promiscuous A-to-I editing. Wiley Interdiscip Rev RNA 2:761–771

    Article  CAS  PubMed  Google Scholar 

  64. Tariq A, Jantsch MF (2012) Transcript diversification in the nervous system: a to I RNA editing in CNS function and disease development. Front Neurosci 6:99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    Article  PubMed Central  PubMed  Google Scholar 

  66. Blow M, Futreal PA, Wooster R, Stratton MR (2004) A survey of RNA editing in human brain. Genome Res 14:2379–2387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D et al (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005

    Article  CAS  PubMed  Google Scholar 

  69. Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O’Connell MA, Li JB (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10:128–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Chen LL, DeCerbo JN, Carmichael GG (2008) Alu element-mediated gene silencing. EMBO J 27:1694–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  CAS  PubMed  Google Scholar 

  72. Capshew CR, Dusenbury KL, Hundley HA (2012) Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 40:8637–8645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hundley HA, Krauchuk AA, Bass BL (2008) C. elegans and H. sapiens mRNAs with edited 3′ UTRs are present on polysomes. RNA 14:2050–2060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Nallagatla SR, Toroney R, Bevilacqua PC (2011) Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr Opin Struct Biol 21:119–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kim Y, Lee JH, Park JE, Cho J, Yi H, Kim VN (2014) PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator. Genes Dev 28:1310–1322

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellaker C, Vesely C, Ponting CP, McLaughlin PJ et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell reports 9:1482–1494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Barton RM, Worman HJ (1999) Prenylated prelamin A interacts with Narf, a novel nuclear protein. J Biol Chem 274:30008–30018

    Article  CAS  PubMed  Google Scholar 

  78. Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Lev-Maor G, Goren A, Sela N, Kim E, Keren H, Doron-Faigenboim A, Leibman-Barak S, Pupko T, Ast G (2007) The “alternative” choice of constitutive exons throughout evolution. PLoS Genet 3:e203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Daniel C, Silberberg G, Behm M, Öhman M (2014) Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15:R28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Yeo J, Goodman RA, Schirle NT, David SS, Beal PA (2010) RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci USA 107:20715–20719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Shimokawa T, Rahman MF, Tostar U, Sonkoly E, Stahle M, Pivarcsi A, Palaniswamy R, Zaphiropoulos PG (2013) RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol 10:321–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  86. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B (1991) Scrambled exons. Cell 64:607–613

    Article  CAS  PubMed  Google Scholar 

  88. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7:155–160

    CAS  PubMed  Google Scholar 

  89. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030

    Article  CAS  PubMed  Google Scholar 

  90. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  91. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  92. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9:e1003777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Chao CW, Chan DC, Kuo A, Leder P (1998) The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med 4:614–628

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30:4414–4422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  PubMed  Google Scholar 

  98. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C et al (2014) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177

    Article  PubMed  CAS  Google Scholar 

  99. Wilusz JE, Sharp PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340:440–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Article  CAS  PubMed  Google Scholar 

  101. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36:770–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  105. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet TIG 21:322–326

    Article  CAS  PubMed  Google Scholar 

  108. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW et al (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elem 1:8–17

    Article  Google Scholar 

  109. Dahary D, Shalgi R, Pilpel Y (2011) CpG Islands as a putative source for animal miRNAs: evolutionary and functional implications. Mol Biol Evol 28:1545–1551

    Article  CAS  PubMed  Google Scholar 

  110. Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC (2009) Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 4:e4456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2:e203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Yuan Z, Sun X, Jiang D, Ding Y, Lu Z, Gong L, Liu H, Xie J (2010) Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol Biol 10:346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, Newman DC, Perry TJ, Russell ME, Wallace BM et al (2013) Continuing analysis of microRNA origins: formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elem 3:e27755

    Article  Google Scholar 

  115. Ahn K, Gim JA, Ha HS, Han K, Kim HS (2013) The novel MER transposon-derived miRNAs in human genome. Gene 512:422–428

    Article  CAS  PubMed  Google Scholar 

  116. Hoffman Y, Dahary D, Bublik DR, Oren M, Pilpel Y (2013) The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics 29:894–902

    Article  CAS  PubMed  Google Scholar 

  117. Spengler RM, Oakley CK, Davidson BL (2014) Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet 23:1783–1793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  CAS  PubMed  Google Scholar 

  119. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  CAS  PubMed  Google Scholar 

  120. Zhang R, Wang YQ, Su B (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 25:1493–1502

    Article  CAS  PubMed  Google Scholar 

  121. Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73:823–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Smalheiser NR (2003) EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol 4:403

    Article  PubMed Central  PubMed  Google Scholar 

  125. Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37:3464–3473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y, Hibi T (2009) Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 28:2738–2744

    Article  CAS  PubMed  Google Scholar 

  127. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  CAS  PubMed  Google Scholar 

  128. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  130. Daskalova E, Baev V, Rusinov V, Minkov I (2006) 3′UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evolut Bioinform Online 2:103–120

    Google Scholar 

  131. Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet TIG 22:532–536

    Article  CAS  PubMed  Google Scholar 

  132. Sinnett D, Richer C, Deragon JM, Labuda D (1991) Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J Biol Chem 266:8675–8678

    CAS  PubMed  Google Scholar 

  133. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Ebersberger I, Metzler D, Schwarz C, Paabo S (2002) Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet 70:1490–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Chen FC, Li WH (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68:444–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci USA 100:7181–7188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, Batzer MA (2004) Differential alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res 14:1068–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78:671–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, Huang CT, Sandifer E, Hebert K, Barnes EW et al (2007) Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 316:238–240

    Article  CAS  PubMed  Google Scholar 

  140. Chimpanzee S, Analysis C (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  141. Rhesus Macaque Genome S. Analysis C, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  CAS  Google Scholar 

  142. Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G (2010) Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107:12174–12179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Gommans WM, Mullen SP, Maas S (2009) RNA editing: a driving force for adaptive evolution? BioEssays News Rev Mol Cell Dev Biol 31:1137–1145

    Article  CAS  Google Scholar 

  144. Mattick JS (2009) Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 1178:29–46

    Article  CAS  PubMed  Google Scholar 

  145. Levanon EY, Eisenberg E (2014) Does RNA editing compensate for Alu invasion of the primate genome? BioEssays 37:175–181

    Article  PubMed  CAS  Google Scholar 

  146. Greenberger S, Levanon EY, Paz-Yaacov N, Barzilai A, Safran M, Osenberg S, Amariglio N, Rechavi G, Eisenberg E (2010) Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats. BMC Genom 11:608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Joshua Rosenthal, Lars Wieslander, and Petra Björk for their input and for critically reading the paper. This work was supported by the Swedish Research Council, grant K2013-66X-20702-06-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Öhman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, C., Behm, M. & Öhman, M. The role of Alu elements in the cis-regulation of RNA processing. Cell. Mol. Life Sci. 72, 4063–4076 (2015). https://doi.org/10.1007/s00018-015-1990-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1990-3

Keywords

Navigation