Skip to main content

Advertisement

Log in

Polycomb group proteins and MYC: the cancer connection

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9:773–784

    CAS  PubMed  Google Scholar 

  2. Bantignies F, Cavalli G (2011) Polycomb group proteins: repression in 3D. Trends Genet 27:454–464

    CAS  PubMed  Google Scholar 

  3. Sawarkar R, Paro R (2010) Interpretation of developmental signaling at chromatin: the polycomb perspective. Dev Cell 19:651–661

    CAS  PubMed  Google Scholar 

  4. Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11:513–525

    CAS  PubMed  Google Scholar 

  5. Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7:288–298

    CAS  PubMed  Google Scholar 

  6. Boukarabila H, Saurin AJ, Batsché E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E (2009) The PRC1 polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23:1195–1206

    CAS  PubMed  Google Scholar 

  7. Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT (2012) Spreading of X chromosome inactivation via a hierarchy of defined polycomb stations. Genome Res 22:1864–1876

    CAS  PubMed  Google Scholar 

  8. Nozawa RS, Nagao K, Igami KT, Shibata S, Shirai N, Nozaki N, Sado T, Kimura H, Obuse C (2013) Human inactive X chromosome is compacted through a PRC2-independent SMCHD1–HBiX1 pathway. Nat Struct Mol Biol 20:566–573

    CAS  PubMed  Google Scholar 

  9. Kalantry S, Magnuson T (2006) The polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2:e66

    PubMed Central  PubMed  Google Scholar 

  10. Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313

    CAS  PubMed  Google Scholar 

  11. Martin-Perez D, Piris MA, Sanchez-Beato M (2010) Polycomb proteins in hematologic malignancies. Blood 116:5465–5475

    CAS  PubMed  Google Scholar 

  12. Radulović V, de Haan G, Klauke K. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia. 2013;27(3):523-33

    Google Scholar 

  13. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Luis NM, Morey L, Di Croce L, Benitah SA (2012) Polycomb in stem cells: PRC1 branches out. Cell Stem Cell 11:16–21

    CAS  PubMed  Google Scholar 

  16. Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD, Wirth U, Bouwmeester T, Bauer A, Ly-Hartig N, Zhao K, Chan H, Gu J, Gut H, Fischle W, Müller J, Thomä NH (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42:330–341

    CAS  PubMed  Google Scholar 

  19. Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M (2012) Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem 287:35784–35794

    CAS  PubMed  Google Scholar 

  20. Brockdorff N (2013) Noncoding RNA and polycomb recruitment. RNA 19:429–442

    CAS  PubMed  Google Scholar 

  21. Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, Carlomagno T, Benitah SA, Di Croce L (2012) Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat Struct Mol Biol 19:1257–1265

    PubMed  Google Scholar 

  22. Brien GL, Gambero G, O’Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, Lohan AJ, Ferguson N, Shi X, Sinha KM, Loftus BJ, Cagney G, Bracken AP (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19:1273–1281

    CAS  PubMed  Google Scholar 

  23. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    CAS  PubMed  Google Scholar 

  24. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T, Han Z, Chai J, Zhou XJ, Gao S, Zhu B (2012) Dense chromatin activates polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337(6097):971–975

    CAS  PubMed  Google Scholar 

  25. Yang Y, Wang C, Zhang P, Gao K, Wang D, Yu H, Zhang T, Jiang S, Hexige S, Hong Z, Yasui A, Liu JO, Huang H, Yu L (2013) Polycomb group protein PHF1 regulates p53-dependent cell growth arrest and apoptosis. J Biol Chem 288:529–539

    CAS  PubMed  Google Scholar 

  26. Crea F, Duhagon Serrat MA, Hurt EM, Thomas SB, Danesi R, Farrar WL (2011) BMI1 silencing enhances docetaxel activity and impairs antioxidant response in prostate cancer. Int J Cancer 128:1946–1954

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Siddique HR, Saleem M (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 30:372–378

    CAS  PubMed  Google Scholar 

  28. Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M, Saraya A, Konuma T, Shinga J, Koseki H, Iwama A (2011) Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118:6553–6561

    CAS  PubMed  Google Scholar 

  29. Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AH, Eichmann A, Wellik D, Ducret S, Rijli FM (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339:204–207

    PubMed  Google Scholar 

  30. Crea F, Paolicchi E, Marquez VE, Danesi R (2012) Polycomb genes and cancer: time for clinical application? Crit Rev Oncol Hematol 83:184–193

    PubMed  Google Scholar 

  31. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J, Asp P, Hadler M, Rigo I, De Keersmaecker K, Patel J, Huynh T, Utro F, Poglio S, Samon JB, Paietta E, Racevskis J, Rowe JM, Rabadan R, Levine RL, Brown S, Pflumio F, Dominguez M, Ferrando A, Aifantis I (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18:298–301

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hock H (2012) A complex polycomb issue: the two faces of EZH2 in cancer. Genes Dev 26:751–755

    CAS  PubMed  Google Scholar 

  33. Richly H, Aloia L, Di Croce L (2011) Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis 2:e204

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    CAS  PubMed  Google Scholar 

  35. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    CAS  PubMed  Google Scholar 

  36. Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY, Mori H, Inaba T, Ogawa S, Honda H (2012) EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26:2557–2560

    CAS  PubMed  Google Scholar 

  37. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338:1465–1469

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224

    CAS  PubMed  Google Scholar 

  39. Buendia MA, Bourre L, Cairo S (2012) Myc target miRs and liver cancer: small molecules to get Myc sick. Gastroenterology 142:214–218

    PubMed  Google Scholar 

  40. Uribesalgo I, Benitah SA, Di Croce L (2012) From oncogene to tumor suppressor: the dual role of Myc in leukemia. Cell Cycle 11:1757–1764

    CAS  PubMed  Google Scholar 

  41. Cascón A, Robledo M (2012) MAX and MYC: a heritable breakup. Cancer Res 72:3119–3124

    PubMed  Google Scholar 

  42. Lüscher B, Vervoorts J (2012) Regulation of gene transcription by the oncoprotein MYC. Gene 494:145–160

    PubMed  Google Scholar 

  43. Lee S, Schmitt CA, Reimann M (2011) The Myc/macrophage tango: oncogene-induced senescence Myc style. Semin Cancer Biol 21:377–384

    CAS  PubMed  Google Scholar 

  44. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjö S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12:54–59 (sup pp 1–14)

    CAS  PubMed  Google Scholar 

  45. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang C, Tai Y, Lisanti MP, Liao DJ (2011) c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 1:615–626

    Google Scholar 

  47. Zhang Q, Spears E, Boone DN, Li Z, Gregory MA, Hann SR (2013) Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity. Proc Natl Acad Sci USA 110:978–983

    CAS  PubMed  Google Scholar 

  48. Smith K, Dalton S (2010) Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 5:947–959

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25:2723–2734

    CAS  PubMed  Google Scholar 

  50. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65:753–763

    CAS  PubMed  Google Scholar 

  52. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    PubMed  Google Scholar 

  53. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13:2678–2690

    CAS  PubMed  Google Scholar 

  54. Guney I, Sedivy JM (2006) Cellular senescence, epigenetic switches and c-Myc. Cell Cycle 5:2319–2323

    CAS  PubMed  Google Scholar 

  55. Cenci T, Martini M, Montano N, D’Alessandris QG, Falchetti ML, Annibali D, Savino M, Bianchi F, Pierconti F, Nasi S, Pallini R, Larocca LM (2012) Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol 138:390–396

    CAS  PubMed  Google Scholar 

  56. Joensuu K, Hagström J, Leidenius M, Haglund C, Andersson LC, Sariola H, Heikkilä P (2011) Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases—elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch 459:31–39

    CAS  PubMed  Google Scholar 

  57. Ochiai H, Takenobu H, Nakagawa A, Yamaguchi Y, Kimura M, Ohira M, Okimoto Y, Fujimura Y, Koseki H, Kohno Y, Nakagawara A, Kamijo T (2010) Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bbeta and TSLC1 in neuroblastoma. Oncogene 29:2681–2690

    CAS  PubMed  Google Scholar 

  58. Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16 (INK4a). Proc Natl Acad Sci USA 103:3645–3650

    CAS  PubMed  Google Scholar 

  59. Duss S, André S, Nicoulaz AL, Fiche M, Bonnefoi H, Brisken C, Iggo RD (2007) An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res 9:R38

    PubMed Central  PubMed  Google Scholar 

  60. Cho JH, Dimri M, Dimri GP (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 288:3406–3418

    CAS  PubMed  Google Scholar 

  61. Behesti H, Bhagat H, Dubuc AM, Taylor MD, Marino S (2013) Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation. Dis Model Mech 6:49–63

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, Yuan J, Cai JC, He M, Wang L, Zeng M, Cheng SY, Li M (2010) Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB pathway. Am J Pathol 176:699–709

    CAS  PubMed  Google Scholar 

  63. Huang R, Cheung NK, Vider J, Cheung IY, Gerald WL, Tickoo SK, Holland EC, Blasberg RG (2011) MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J 25:4138–4149

    CAS  PubMed  Google Scholar 

  64. Calao M, Sekyere EO, Cui HJ, Cheung BB, Thomas WD, Keating J, Chen JB, Raif A, Jankowski K, Davies NP, Bekkum MV, Chen B, Tan O, Ellis T, Norris MD, Haber M, Kim ES, Shohet JM, Trahair TN, Liu T, Wainwright BJ, Ding HF, Marshall GM (2012) Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene. doi:10.1038/onc.2012.368

    PubMed  Google Scholar 

  65. Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She QB, Chen Z, Lin HK, Di Giandomenico S, Elf SE, Yang Y, Miyata Y, Huang G, Menendez S, Mellinghoff IK, Rosen N, Pandolfi PP, Hedvat CV, Nimer SD (2012) Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal 5:ra77

    PubMed Central  PubMed  Google Scholar 

  66. Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM (2008) FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 283:16545–16553

    CAS  PubMed  Google Scholar 

  67. Qian T, Lee JY, Park JH, Kim HJ, Kong G (2010) Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex. Oncogene 29:5818–5827

    CAS  PubMed  Google Scholar 

  68. Scott CL, Gil J, Hernando E, Teruya-Feldstein J, Narita M, Martínez D, Visakorpi T, Mu D, Cordon-Cardo C, Peters G, Beach D, Lowe SW (2007) Role of the chromobox protein CBX7 in lymphomagenesis. Proc Natl Acad Sci USA 104:5389–5394

    CAS  PubMed  Google Scholar 

  69. Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y, Kong G (2008) Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 68:4201–4209

    CAS  PubMed  Google Scholar 

  70. Guo WJ, Zeng MS, Yadav A, Song LB, Guo BH, Band V, Dimri GP (2007) Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breastcancer cells. Cancer Res 67:5083–5089

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang W, Lin T, Huang J, Hu W, Xu K, Liu J (2011) Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol 29:244–251

    CAS  PubMed  Google Scholar 

  72. Guo WJ, Datta S, Band V, Dimri GP (2007) Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell 18:536–546

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Häyry V, Mäkinen LK, Atula T, Sariola H, Mäkitie A, Leivo I, Keski-Säntti H, Lundin J, Haglund C, Hagström J (2010) Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer 102:892–897

    PubMed Central  PubMed  Google Scholar 

  74. Tabach Y, Kogan-Sakin I, Buganim Y, Solomon H, Goldfinger N, Hovland R, Ke XS, Oyan AM, Kalland KH, Rotter V, Domany E (2011) Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One 6:e14632

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Suvà ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, Baumer K, Le Bitoux MA, Marino D, Cironi L, Marquez VE, Clément V, Stamenkovic I (2009) EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 69:9211–9218

    PubMed  Google Scholar 

  76. Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27:5105–5119

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 109:5028–5033

    CAS  PubMed  Google Scholar 

  78. Pellakuru LG, Iwata T, Gurel B, Schultz D, Hicks J, Bethel C, Yegnasubramanian S, De Marzo AM (2012) Global levels of H3K27me3 track with differentiation in vivo and are deregulated by MYC in prostate cancer. Am J Pathol 181:560–569

    CAS  PubMed  Google Scholar 

  79. Palakurthy RK, Wajapeyee N, Santra MK, Gazin C, Lin L, Gobeil S, Green MR (2009) Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell 36:219–230

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3:e3932

    PubMed Central  PubMed  Google Scholar 

  81. Kaur M, Cole MD (2013) MYC acts via the PTEN tumor suppressor to elicit auto regulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res 73:695–705

    CAS  PubMed  Google Scholar 

  82. Corvetta D, Chayka O, Gherardi S, et al. Physical interaction between MYCN and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem. 2013;288(12):8332-41

    Google Scholar 

  83. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J, Bar-Nur O, Cheloufi S, Stadtfeld M, Figueroa ME, Robinton D, Natesan S, Melnick A, Zhu J, Ramaswamy S, Hochedlinger K (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, Cantor AB, Orkin SH (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143:313–324

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Fragola G, Germain PL, Laise P, Cuomo A, Blasimme A, Gross F, Signaroldi E, Bucci G, Sommer C, Pruneri G, Mazzarol G, Bonaldi T, Mostoslavsky G, Casola S, Testa G (2013) Cell reprogramming requires silencing of a core subset of polycomb targets. PLoS Genet 9:e1003292

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Jia J, Zheng X, Hu G, Cui K, Zhang J, Zhang A, Jiang H, Lu B, Yates J 3rd, Liu C, Zhao K, Zheng Y (2012) Regulation of pluripotency and self-renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 151:576–589

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S (2012) Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol 32:840–851

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Bhandari DR, Seo KW, Jung JW, Kim HS, Yang SR, Kang KS (2011) The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells. J Cell Mol Med 15:1603–1614

    CAS  PubMed  Google Scholar 

  90. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    CAS  PubMed  Google Scholar 

  91. Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, Briasoulis E (2013) The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci 70:795–814

    CAS  PubMed  Google Scholar 

  92. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC (2012) The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 14:1114–1121

    CAS  PubMed  Google Scholar 

  93. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    CAS  PubMed  Google Scholar 

  94. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 2006(22):165–173

    Google Scholar 

  95. Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE (2012) Autoregulation of microRNA biogenesis by let-7 and argonaute. Nature 486:541–544

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Xhemalce B, Robson SC, Kouzarides T (2012) Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151:278–288

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:8468–8470

    Google Scholar 

  100. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282

    CAS  PubMed  Google Scholar 

  101. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    CAS  PubMed  Google Scholar 

  102. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267

    PubMed Central  PubMed  Google Scholar 

  103. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13:e249–e258

    CAS  PubMed  Google Scholar 

  104. Nair VS, Maeda LS, Ioannidis JP (2012) Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 104:528–540

    CAS  PubMed  Google Scholar 

  105. Chen PS, Su JL, Hung MC (2012) Dysregulation of microRNAs in cancer. J Biomed Sci 19:90

    CAS  PubMed  Google Scholar 

  106. Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15:1443–1461

    CAS  PubMed  Google Scholar 

  107. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207

    CAS  PubMed  Google Scholar 

  108. Zhao H, Wang D, Du W, Gu D, Yang R (2010) MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74:149–155

    PubMed  Google Scholar 

  109. Kunej T, Godnic I, Horvat S, Zorc M, Calin GA (2012) Cross talk between microRNA and coding cancer genes. Cancer J 18:223–231

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, Wang J, Arnovitz S, Elkahloun A, Price C, Hong GM, Ren H, Kunjamma RB, Neilly MB, Matthews JM, Xu M, Larson RA, Le Beau MM, Slany RK, Liu PP, Lu J, Zhang J, He C, Chen J (2012) Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 22:524–535

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc–microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res. 2013;41(4):2239-54

    Google Scholar 

  113. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109:8983–8988

    CAS  PubMed  Google Scholar 

  114. Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E (2012) Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer. doi:10.1002/ijc.27859

    PubMed  Google Scholar 

  115. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843

    CAS  PubMed  Google Scholar 

  116. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright KL, Sotomayor E, Bhalla K, Tao J (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 22:506–523

    CAS  PubMed  Google Scholar 

  117. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z, Yu J, Maher CA, Varambally S, Chinnaiyan AM (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20:187–199

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119:4034–4046

    CAS  PubMed  Google Scholar 

  119. Lovén J, Zinin N, Wahlström T, Müller I, Brodin P, Fredlund E, Ribacke U, Pivarcsi A, Påhlman S, Henriksson M (2010) MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 107:1553–1558

    PubMed  Google Scholar 

  120. Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM (2011) Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2:669–683

    PubMed  Google Scholar 

  121. Sander S, Bullinger L, Wirth T (2009) Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle 8:556–559

    CAS  PubMed  Google Scholar 

  122. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR, Wirth T (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212

    CAS  PubMed  Google Scholar 

  123. Salvatori B, Iosue I, Djodji Damas N, Mangiavacchi A, Chiaretti S, Messina M, Padula F, Guarini A, Bozzoni I, Fazi F, Fatica A (2011) Critical role of c-Myc in acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer 2:585–592

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, Chen YC, Peng Y, Yao KT, Kung HF, Li XP (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71:225–233

    CAS  PubMed  Google Scholar 

  125. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    CAS  PubMed  Google Scholar 

  126. Sodir NM, Evan GI (2011) Finding cancer’s weakest link. Oncotarget 2:1307–1313

    PubMed  Google Scholar 

  127. Whitfield JR, Soucek L (2012) Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci 69:931–934

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, Soucek L, Nasi S (2011) The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 6:e22284

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Frenzel A, Lovén J, Henriksson MA (2010) Targeting MYC-regulated miRNAs to combat cancer. Genes Cancer 1:660–667

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R (2012) EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 31:753–761

    CAS  PubMed  Google Scholar 

  133. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    CAS  PubMed  Google Scholar 

  134. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    CAS  PubMed  Google Scholar 

  135. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, Zeng J, Li M, Fan H, Lin Y, Gu J, Ardayfio O, Zhang JH, Yan X, Fang J, Mi Y, Zhang M, Zhou T, Feng G, Chen Z, Li G, Yang T, Zhao K, Liu X, Yu Z, Lu CX, Atadja P, Li E (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 109:21360–21365

    CAS  PubMed  Google Scholar 

  136. Li Y, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One 8:e54369

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Bommi PV, Dimri M, Sahasrabuddhe AA, Khandekar J, Dimri GP (2010) The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. Cell Cycle 9:2663–2673

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nikolaos Benetatos MD for critical review of the manuscript. The authors apologize to those authors whose work has not been cited.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Benetatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benetatos, L., Vartholomatos, G. & Hatzimichael, E. Polycomb group proteins and MYC: the cancer connection. Cell. Mol. Life Sci. 71, 257–269 (2014). https://doi.org/10.1007/s00018-013-1426-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1426-x

Keywords

Navigation