Skip to main content

Advertisement

Log in

Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sprouty2 is an important inhibitor of cell proliferation and signal transduction. In this study, we found a bimodal expression of Sprouty2 protein during cell cycle progression after exit from quiescence, whereas elevated Sprouty4 expression in the G1 phase stayed high throughout the rest of the cell cycle. Induction of the mitogen-activated protein kinase via activated Ras was crucial for increased Sprouty2 expression at the G0/G1 transition. Following the first peak, accelerated proteasomal protein degradation caused a transient attenuation of Sprouty2 abundance during late G1. Since the decline in its expression was abolished by dominant negative c-Cbl and the timely restricted interaction between Sprouty2 and c-Cbl disappeared at the second peak of Sprouty2 expression, we conclude that the second phase in the cell cycle-specific expression profile of Sprouty2 is solely dependent on ubiquitination by c-Cbl. Our results suggest that Sprouty2 abundance is the result of strictly coordinated activities of Ras and c-Cbl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263

    Article  CAS  PubMed  Google Scholar 

  2. Nutt SL, Dingwell KS, Holt CE, Amaya E (2001) Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev 15:1152–1166

    Article  CAS  PubMed  Google Scholar 

  3. Chambers D, Mason I (2000) Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech Dev 91:361–364

    Article  CAS  PubMed  Google Scholar 

  4. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475

    CAS  PubMed  Google Scholar 

  5. Furthauer M, Lin W, Ang SL, Thisse B, Thisse C (2002) Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 4:170–174

    Article  CAS  PubMed  Google Scholar 

  6. de Maximy AA, Nakatake Y, Moncada S, Itoh N, Thiery JP, Bellusci S (1999) Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. Mech Dev 81:213–216

    Article  PubMed  Google Scholar 

  7. Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D (1999) Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 9:219–222

    Article  CAS  PubMed  Google Scholar 

  8. Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, Bellusci S (2001) Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 102:81–94

    Article  CAS  PubMed  Google Scholar 

  9. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098

    Article  CAS  PubMed  Google Scholar 

  10. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133

    Article  CAS  PubMed  Google Scholar 

  11. Gross I, Bassit B, Benezra M, Licht JD (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276:46460–46468

    Article  CAS  PubMed  Google Scholar 

  12. Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF, Gao CF (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23:5193–5202

    Article  CAS  PubMed  Google Scholar 

  13. Sutterluty H, Mayer CE, Setinek U, Attems J, Ovtcharov S, Mikula M, Mikulits W, Micksche M, Berger W (2007) Down-regulation of sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol Cancer Res 5:509–520

    Article  PubMed  Google Scholar 

  14. Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB (2001) The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 276:22742–22747

    Article  CAS  PubMed  Google Scholar 

  15. Ozaki K, Kadomoto R, Asato K, Tanimura S, Itoh N, Kohno M (2001) ERK pathway positively regulates the expression of Sprouty genes. Biochem Biophys Res Commun 285:1084–1088

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A (2001) Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 276:36804–36808

    Article  CAS  PubMed  Google Scholar 

  17. Chambers D, Medhurst AD, Walsh FS, Price J, Mason I (2000) Differential display of genes expressed at the midbrain–hindbrain junction identifies sprouty2: an FGF8-inducible member of a family of intracellular FGF antagonists. Mol Cell Neurosci 15:22–35

    Article  CAS  PubMed  Google Scholar 

  18. Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16:45–54

    Article  CAS  PubMed  Google Scholar 

  19. Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160

    Article  CAS  PubMed  Google Scholar 

  20. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 13:297–307

    Article  CAS  PubMed  Google Scholar 

  21. Wong ES, Lim J, Low BC, Chen Q, Guy GR (2001) Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 276:5866–5875

    Article  CAS  PubMed  Google Scholar 

  22. Edwin F, Anderson K, Patel TB (2010) HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 285:255–264

    Article  CAS  PubMed  Google Scholar 

  23. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    Article  CAS  PubMed  Google Scholar 

  24. Sutterluety H, Bartl S, Doetzlhofer A, Khier H, Wintersberger E, Seiser C (1998) Growth-regulated antisense transcription of the mouse thymidine kinase gene. Nucleic Acids Res 26:4989–4995

    Article  CAS  PubMed  Google Scholar 

  25. Macheiner D, Gauglhofer C, Rodgarkia-Dara C, Grusch M, Brachner A, Bichler C, Kandioler D, Sutterluty H, Mikulits W, Schulte-Hermann R, Grasl-Kraupp B (2009) NORE1B is a putative tumor suppressor in hepatocarcinogenesis and may act via RASSF1A. Cancer Res 69:235–242

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467

    Article  CAS  PubMed  Google Scholar 

  27. Reed SI (2003) Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4:855–864

    Article  CAS  PubMed  Google Scholar 

  28. Thien CB, Walker F, Langdon WY (2001) RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 7:355–365

    Article  CAS  PubMed  Google Scholar 

  29. Haglund K, Schmidt MH, Wong ES, Guy GR, Dikic I (2005) Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep 6:635–641

    Article  CAS  PubMed  Google Scholar 

  30. Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 15:2176–2188

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  32. Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M (2004) The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 64:4728–4735

    Article  CAS  PubMed  Google Scholar 

  33. McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R, Gnanapragasam VJ, Robson CN, Leung HY (2005) Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene 24:2166–2174

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Thompson B, Ren C, Ittmann M, Kwabi-Addo B (2006) Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate 66:613–624

    Article  CAS  PubMed  Google Scholar 

  35. Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q, Putti TC, Guy GR (2004) The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res 64:6127–6136

    Article  CAS  PubMed  Google Scholar 

  36. Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R, Yusoff P, Lo TL, Leung HY, So SK, Guy GR (2006) Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 66:2048–2058

    Article  CAS  PubMed  Google Scholar 

  37. Jaggi F, Cabrita MA, Perl AK, Christofori G (2008) Modulation of endocrine pancreas development but not beta-cell carcinogenesis by Sprouty4. Mol Cancer Res 6:468–482

    Article  PubMed  Google Scholar 

  38. Edwin F, Singh R, Endersby R, Baker SJ, Patel TB (2006) The tumor suppressor PTEN is necessary for human sprouty 2 mediated inhibition of cell proliferation. J Biol Chem 281:4816–4822

    Article  CAS  PubMed  Google Scholar 

  39. Shaw AT, Meissner A, Dowdle JA, Crowley D, Magendantz M, Ouyang C, Parisi T, Rajagopal J, Blank LJ, Bronson RT, Stone JR, Tuveson DA, Jaenisch R, Jacks T (2007) Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 21:694–707

    Article  CAS  PubMed  Google Scholar 

  40. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    Article  CAS  PubMed  Google Scholar 

  41. Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352:896–902

    Article  CAS  PubMed  Google Scholar 

  42. Winn RA, Marek L, Han SY, Rodriguez K, Rodriguez N, Hammond M, Van Scoyk M, Acosta H, Mirus J, Barry N, Bren-Mattison Y, Van Raay TJ, Nemenoff RA, Heasley LE (2005) Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem 280:19625–19634

    Article  CAS  PubMed  Google Scholar 

  43. Ding W, Bellusci S, Shi W, Warburton D (2003) Functional analysis of the human Sprouty2 gene promoter. Gene 322:175–185

    Article  CAS  PubMed  Google Scholar 

  44. Thien CB, Langdon WY (2001) Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2:294–307

    Article  CAS  PubMed  Google Scholar 

  45. Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314

    Article  CAS  PubMed  Google Scholar 

  46. DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D (2006) Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 26:1898–1907

    Article  CAS  PubMed  Google Scholar 

  47. Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E (2004) Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279:22992–22995

    Article  CAS  PubMed  Google Scholar 

  48. Lao DH, Yusoff P, Chandramouli S, Philp RJ, Fong CW, Jackson RA, Saw TY, Yu CY, Guy GR (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 282:9117–9126

    Article  CAS  PubMed  Google Scholar 

  49. Wu WJ, Tu S, Cerione RA (2003) Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114:715–725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Herzfelder’sche Familienstiftung 07 and the Fonds der Stadt Wien für Innovative Interdisziplinäre Krebsforschung, project number K-7/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedwig Sutterlüty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, CE., Haigl, B., Jantscher, F. et al. Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities. Cell. Mol. Life Sci. 67, 3299–3311 (2010). https://doi.org/10.1007/s00018-010-0379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0379-6

Keywords

Navigation