Skip to main content
Log in

Molecular basis of morphogenesis during vertebrate gastrulation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gastrulation is a crucial step in early embryogenesis. During gastrulation, a set of morphogenetic processes takes place leading to the establishment of the basic body plan and formation of primary germ layers. A rich body of knowledge about these morphogenetic processes has been accumulated over decades. The understanding of the molecular mechanism that controls the complex cell movement and inductive processes during gastrulation remains a challenge. Substantial progress has been made recently to identify and characterize pathways and molecules implicated in the modulation of morphogenesis during vertebrate gastrulation. Here, we summarize recent findings in the analysis of signaling pathways implicated in gastrulation movements, with the aim to generalize the basic molecular principles of vertebrate morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    Article  PubMed  CAS  Google Scholar 

  2. Keller R, Davidson LA, Shook DR (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205

    Article  PubMed  Google Scholar 

  3. Leptin M (2005) Gastrulation movements: the logic and the nuts and bolts. Dev Cell 8:305–320

    Article  PubMed  CAS  Google Scholar 

  4. Kuhl M, Geis K, Sheldahl LC, Pukrop T, Moon RT, Wedlich D (2001) Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev 106:61–76

    Article  PubMed  CAS  Google Scholar 

  5. Keller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–1954

    Article  PubMed  CAS  Google Scholar 

  6. Wacker S, Grimm K, Joos T, Winklbauer R (2000) Development and control of tissue separation at gastrulation in Xenopus. Dev Biol 224:428–439

    Article  PubMed  CAS  Google Scholar 

  7. Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13:251–260

    Article  PubMed  CAS  Google Scholar 

  8. Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119:97–111

    PubMed  CAS  Google Scholar 

  9. Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  10. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81

    Article  PubMed  CAS  Google Scholar 

  11. Park M, Moon RT (2002) The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4:20–25

    Article  PubMed  CAS  Google Scholar 

  12. Yin C, Kiskowski M, Pouille PA, Farge E, Solnica-Krezel L (2008) Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 180:221–232

    Article  PubMed  CAS  Google Scholar 

  13. Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799

    Article  PubMed  CAS  Google Scholar 

  14. Choi SC, Han JK (2002) Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev Biol 244:342–357

    Article  PubMed  CAS  Google Scholar 

  15. Penzo-Mendez A, Umbhauer M, Djiane A, Boucaut JC, Riou JF (2003) Activation of Gbetagamma signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev Biol 257:302–314

    Article  PubMed  CAS  Google Scholar 

  16. Winklbauer R, Medina A, Swain RK, Steinbeisser H (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413:856–860

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita N, Iioka H, Miyakoshi A, Ueno N (2003) PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 17:1663–1676

    Article  PubMed  CAS  Google Scholar 

  18. Sivak JM, Petersen LF, Amaya E (2005) FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell 8:689–701

    Article  PubMed  CAS  Google Scholar 

  19. Kwan KM, Kirschner MW (2003) Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula. Development 130:1961–1972

    Article  PubMed  CAS  Google Scholar 

  20. Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N (2003) The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 13:674–679

    Article  PubMed  CAS  Google Scholar 

  21. Frazzetto G, Klingbeil P, Bouwmeester T (2002) Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements. Mech Dev 113:3–14

    Article  PubMed  CAS  Google Scholar 

  22. Chung HA, Hyodo-Miura J, Nagamune T, Ueno N (2005) FGF signal regulates gastrulation cell movements and morphology through its target NRH. Dev Biol 282:95–110

    Article  PubMed  CAS  Google Scholar 

  23. Sasai N, Nakazawa Y, Haraguchi T, Sasai Y (2004) The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nat Cell Biol 6:741–748

    Article  PubMed  CAS  Google Scholar 

  24. Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18:447–455

    Article  PubMed  CAS  Google Scholar 

  25. Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79:169–179

    Article  PubMed  CAS  Google Scholar 

  26. Myers DC, Sepich DS, Solnica-Krezel L (2002) Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol 243:81–98

    Article  PubMed  CAS  Google Scholar 

  27. Yokota C, Kofron M, Zuck M, Houston DW, Isaacs H, Asashima M, Wylie CC, Heasman J (2003) A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development 130:2199–2212

    Article  PubMed  CAS  Google Scholar 

  28. Shindo A, Yamamoto TS, Ueno N (2008) Coordination of cell polarity during Xenopus gastrulation. PLoS ONE 3:e1600

    Article  PubMed  Google Scholar 

  29. Piddini E, Vincent JP (2003) Modulation of developmental signals by endocytosis: different means and many ends. Curr Opin Cell Biol 15:474–481

    Article  PubMed  CAS  Google Scholar 

  30. Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T (2007) Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev Cell 12:129–141

    Article  PubMed  CAS  Google Scholar 

  31. Kim GH, Her JH, Han JK (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182:1073–1082

    Article  PubMed  CAS  Google Scholar 

  32. Jarrett O, Stow JL, Yap AS, Key B (2002) Dynamin-dependent endocytosis is necessary for convergent-extension movements in Xenopus animal cap explants. Int J Dev Biol 46:467–473

    PubMed  CAS  Google Scholar 

  33. Ulrich F, Krieg M, Schotz EM, Link V, Castanon I, Schnabel V, Taubenberger A, Mueller D, Puech PH, Heisenberg CP (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell 9:555–564

    Article  PubMed  CAS  Google Scholar 

  34. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244

    Article  PubMed  CAS  Google Scholar 

  35. Tanegashima K, Zhao H, Dawid IB (2008) WGEF activates Rho in the Wnt–PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J 27:606–617

    Article  PubMed  CAS  Google Scholar 

  36. Miyakoshi A, Ueno N, Kinoshita N (2004) Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 72:48–55

    Article  PubMed  CAS  Google Scholar 

  37. Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegard M, Betsholtz C, Di Fiore PP (1999) EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401:290–293

    Article  PubMed  CAS  Google Scholar 

  38. Roffers-Agarwal J, Xanthos JB, Miller JR (2005) Regulation of actin cytoskeleton architecture by Eps8 and Abi1. BMC Cell Biol 6:36

    Article  PubMed  Google Scholar 

  39. Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell 107:843–854

    Article  PubMed  CAS  Google Scholar 

  40. Tahinci E, Symes K (2003) Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev Biol 259:318–335

    Article  PubMed  CAS  Google Scholar 

  41. Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309

    Article  PubMed  CAS  Google Scholar 

  42. Nelson KK, Nelson RW (2004) Cdc42 effector protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis. BMC Dev Biol 4:13

    Article  PubMed  Google Scholar 

  43. Faure S, Cau J, de Santa BP, Bigou S, Ge Q, Delsert C, Morin N (2005) Xenopus p21-activated kinase 5 regulates blastomeres’ adhesive properties during convergent extension movements. Dev Biol 277:472–492

    Article  PubMed  CAS  Google Scholar 

  44. Sato A, Khadka DK, Liu W, Bharti R, Runnels LW, Dawid IB, Habas R (2006) Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133:4219–4231

    Article  PubMed  CAS  Google Scholar 

  45. Marsden M, DeSimone DW (2003) Integrin–ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13:1182–1191

    Article  PubMed  CAS  Google Scholar 

  46. Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844

    Article  PubMed  CAS  Google Scholar 

  47. Latinkic BV, Mercurio S, Bennett B, Hirst EM, Xu Q, Lau LF, Mohun TJ, Smith JC (2003) Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling. Development 130:2429–2441

    Article  PubMed  CAS  Google Scholar 

  48. Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    Article  PubMed  Google Scholar 

  49. Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, Hammerschmidt M, Postlethwait J, Solnica-Krezel L (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 1:251–264

    Article  PubMed  CAS  Google Scholar 

  50. Ohkawara B, Yamamoto TS, Tada M, Ueno N (2003) Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130:2129–2138

    Article  PubMed  CAS  Google Scholar 

  51. Munoz R, Moreno M, Oliva C, Orbenes C, Larrain J (2006) Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 8:492–500

    Article  PubMed  CAS  Google Scholar 

  52. Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214

    Article  PubMed  CAS  Google Scholar 

  53. Fang X, Ji H, Kim SW, Park JI, Vaught TG, Anastasiadis PZ, Ciesiolka M, McCrea PD (2004) Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. J Cell Biol 165:87–98

    Article  PubMed  CAS  Google Scholar 

  54. Kim SW, Park JI, Spring CM, Sater AK, Ji H, Otchere AA, Daniel JM, McCrea PD (2004) Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat Cell Biol 6:1212–1220

    Article  PubMed  CAS  Google Scholar 

  55. Hirano S, Suzuki ST, Redies C (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8:d306–d355

    Article  PubMed  CAS  Google Scholar 

  56. Redies C, Vanhalst K, Roy F (2005) Delta-protocadherins: unique structures and functions. Cell Mol Life Sci 62:2840–2852

    Article  PubMed  CAS  Google Scholar 

  57. Kuroda H, Inui M, Sugimoto K, Hayata T, Asashima M (2002) Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev Biol 244:267–277

    Article  PubMed  CAS  Google Scholar 

  58. Kim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690

    PubMed  CAS  Google Scholar 

  59. Yamamoto A, Amacher SL, Kim SH, Geissert D, Kimmel CB, De Robertis EM (1998) Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development 125:3389–3397

    PubMed  CAS  Google Scholar 

  60. Wessely O, Kim JI, Geissert D, Tran U, De Robertis EM (2004) Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev Biol 269:552–566

    Article  PubMed  CAS  Google Scholar 

  61. Chen X, Gumbiner BM (2006) Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 174:301–313

    Article  PubMed  CAS  Google Scholar 

  62. Medina A, Swain RK, Kuerner KM, Steinbeisser H (2004) Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J 23:3249–3258

    Article  PubMed  CAS  Google Scholar 

  63. Unterseher F, Hefele JA, Giehl K, De Robertis EM, Wedlich D, Schambony A (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23:3259–3269

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Janicki P, Koster I, Berger CD, Wenzl C, Grosshans J, Steinbeisser H (2008) Xenopus paraxial protocadherin regulates morphogenesis by antagonizing sprouty. Genes Dev 22:878–883

    Article  PubMed  CAS  Google Scholar 

  65. Chung HA, Yamamoto TS, Ueno N (2007) ANR5, an FGF target gene product, regulates gastrulation in Xenopus. Curr Biol 17:932–939

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto A, Kemp C, Bachiller D, Geissert D, De Robertis EM (2000) Mouse paraxial protocadherin is expressed in trunk mesoderm and is not essential for mouse development. Genesis 27:49–57

    Article  PubMed  CAS  Google Scholar 

  67. Hukriede NA, Tsang TE, Habas R, Khoo PL, Steiner K, Weeks DL, Tam PP, Dawid IB (2003) Conserved requirement of Lim1 function for cell movements during gastrulation. Dev Cell 4:83–94

    Article  PubMed  CAS  Google Scholar 

  68. Rangarajan J, Luo T, Sargent TD (2006) PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus. Dev Biol 295:206–218

    Article  PubMed  CAS  Google Scholar 

  69. Strutt H, Strutt D (2005) Long-range coordination of planar polarity in Drosophila. Bioessays 27:1218–1227

    Article  PubMed  CAS  Google Scholar 

  70. Formstone CJ, Mason I (2005) Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol 282:320–335

    Article  PubMed  CAS  Google Scholar 

  71. Witzel S, Zimyanin V, Carreira-Barbosa F, Tada M, Heisenberg CP (2006) Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 175:791–802

    Article  PubMed  CAS  Google Scholar 

  72. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133

    Article  PubMed  CAS  Google Scholar 

  73. Formstone CJ, Mason I (2005) Expression of the Celsr/Flamingo homologue, c-fmi1, in the early avian embryo indicates a conserved role in neural tube closure and additional roles in asymmetry and somitogenesis. Dev Dyn 232:408–413

    Article  PubMed  CAS  Google Scholar 

  74. Karaulanov EE, Bottcher RT, Niehrs C (2006) A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep 7:283–290

    Article  PubMed  CAS  Google Scholar 

  75. Ogata S, Morokuma J, Hayata T, Kolle G, Niehrs C, Ueno N, Cho KW (2007) TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev 21:1817–1831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose work has not been cited due to space limitations and the broad scope of this review. This work was supported by a research grant of the Deutsche Forschungsgemeinschaft (STE-613/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Steinbeisser, H. Molecular basis of morphogenesis during vertebrate gastrulation. Cell. Mol. Life Sci. 66, 2263–2273 (2009). https://doi.org/10.1007/s00018-009-0018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0018-2

Keywords

Navigation