Skip to main content
Log in

The floating body and the hyperplane conjecture

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We study the relationship between a convex body \({K\subset \mathbb{R}^{n}}\) and the convex floating body K δ inside K. Our results complement recent work of Grigoris Paouris and Elisabeth Werner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball K.: Logarithmically concave functions and sections of convex sets in \({\mathbb{R}^{n}}\) . Studia Math. 88, 69–84 (1988)

    MathSciNet  MATH  Google Scholar 

  2. K. Ball, An elementary introduction to modern convex geometry, Flavors of Geometry, MSRI Publications 31, 1997.

  3. Bárány I., Larman D.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274–291 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov S.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27, 1903–1921 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borell C.: Convex set functions in d-space. Period. Math. Hungar. 6, 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  6. Bourgain J.: On high-dimensional maximal functions associated to convex bodies. Amer. J. Math. 108, 1467–1476 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis, (1989–1990), 127–137, Lecture Notes in Math. 1469, Springer, Berlin (1991)

  8. Fradelizi M.: Hyperplane sections of convex bodies in isotropic position. Beiträge Algebra Geom. 40, 163–183 (1999)

    MathSciNet  MATH  Google Scholar 

  9. D. Fresen, A multivariate Gnedenko law of large numbers, arXiv:1101.4887

  10. Giannopoulos A., Paouris G., Valettas P.: On the existence of subgaussian directions for log-concave measures. Contemporary Mathematics 545, 103–122 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hensley D.: Slicing convex bodies-bounds for slice area in terms of the body’s covariance. Proc. Amer. Math. Soc. 79, 619–625 (1980)

    MathSciNet  MATH  Google Scholar 

  12. Klartag B.: A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klartag B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klartag B., Milman V.: Geometry of log-concave functions and measures. Geom. Dedicata 112, 169–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász L., Vempala S.: The geometry of logconcave functions and sampling algorithms. Random Structures Algorithms 30, 307–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis, Israel seminar (1987-1988), Lecture Notes in Math. 1376, Springer-Verlag, Berlin 64–104 (1989)

  17. G. Paouris and E. Werner, Relative entropy of cone measures and L p centroid bodies, Proc. London Math. Soc. pdr030 first published online August 31, 2011 doi:10.1112/plms/pdr030

  18. Pisier G.: The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics 94. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  19. Schütt C.: On the affine surface area. Proc. Amer. Math. Soc. 118, 1213–1218 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schütt C.: The convex floating body and polyhedral approximation. Israel J. Math. 73, 65–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schütt C., Werner E.: The convex floating body. Math. Scand. 66, 275–290 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Vu V.: Sharp concentration of random polytopes. Geom. and Funct. Anal. 15, 1284–1318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fresen.

Additional information

To my dear sister Anna

Many thanks to Sergey Bobkov, Jill Fresen, John Fresen, Nigel Kalton, Alexander Koldobsky, Elizabeth Meckes, Mark Meckes, Mathieu Meyer, Mark Rudelson and Elisabeth Werner for their comments and/or support, as well as the anonymous referee for making valuable suggestions, including several appropriate references.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fresen, D. The floating body and the hyperplane conjecture. Arch. Math. 98, 389–397 (2012). https://doi.org/10.1007/s00013-012-0365-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-012-0365-3

Mathematics Subject Classification (2010)

Keywords

Navigation