Skip to main content

Advertisement

Log in

Barrier protective activities of curcumin and its derivative

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

Curcumin, a poly-phenolic compound, possesses diverse pharmacologic activities. However, the barrier protective functions of curcumin or its derivative have not yet been studied. The objective of this study was to investigate the barrier protective activities of curcumin and its derivative (bisdemethoxycurcumin, BDMC) on lipopolysaccharide (LPS) barrier disruption in human umbilical vein endothelial cells (HUVECs) were investigated.

Methods

The barrier protective effects of curcumin and BDMC such as permeability, expression of cell adhesion molecules, monocytes adhesion and migration toward HUVECs were tested.

Results

Curcumin and BDMC inhibited LPS-induced barrier permeability, monocyte adhesion and migration; inhibitory effects were significantly correlated with inhibitory functions of curcumin and BDMC on LPS-induced cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-induced nuclear factor-κB (NF-κB) activation and tumor necrosis factor-α (TNF-α) release from HUVECs were inhibited by curcumin and BDMC. Surprisingly, the barrier protective activities of BDMC were better than those of curcumin, indicating that the methoxy group in curcumin negatively regulated barrier protection function of curcumin.

Conclusion

Given these results, curcumin or its derivative, BDMC, showed barrier protective activities and they could be a therapeutic candidates for various systemic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

CAM:

Cell adhesion molecule

VCAM:

Vascular cell adhesion molecules

ICAM:

Intracellular cell adhesion molecule

NF-κB:

Nuclear factor-κB

TNF:

Tumor necrosis factor

BDMC:

Bisdemethoxycurcumin

TEM:

Transendothelial migration

References

  1. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14:141–53.

    PubMed  Google Scholar 

  2. Bengmark S, Mesa MD, Gil A. Plant-derived health: the effects of turmeric and curcuminoids. Nutr Hosp. 2009;24:273–81.

    PubMed  CAS  Google Scholar 

  3. Bao W, Li K, Rong S, Yao P, Hao L, Ying C, et al. Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. J Ethnopharmacol. 2010;128:549–53.

    Article  PubMed  CAS  Google Scholar 

  4. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.

    Article  PubMed  Google Scholar 

  6. Inoue K, Nomura C, Ito S, Nagatsu A, Hino T, Oka H. Purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin by high-speed countercurrent chromatography. J Agric Food Chem. 2008;56:9328–36.

    Article  PubMed  CAS  Google Scholar 

  7. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41:40–59.

    Article  PubMed  CAS  Google Scholar 

  8. Gerritsen ME, Bloor CM. Endothelial cell gene expression in response to injury. FASEB J. 1993;7:523–32.

    PubMed  CAS  Google Scholar 

  9. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49.

    Article  PubMed  CAS  Google Scholar 

  10. Dhillon SS, Mahadevan K, Bandi V, Zheng Z, Smith CW, Rumbaut RE. Neutrophils, nitric oxide, and microvascular permeability in severe sepsis. Chest. 2005;128:1706–12.

    Article  PubMed  CAS  Google Scholar 

  11. Harlan JM. Leukocyte–endothelial interactions. Blood. 1985;65:513–25.

    PubMed  CAS  Google Scholar 

  12. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  PubMed  CAS  Google Scholar 

  13. Hogg N, Berlin C. Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today. 1995;16:327–30.

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991;65:859–73.

    Article  PubMed  CAS  Google Scholar 

  15. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992;258:964–9.

    Article  PubMed  CAS  Google Scholar 

  16. Gimbrone MA Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995;75:67B–70B.

    Article  PubMed  CAS  Google Scholar 

  17. Jerzak P. The role of adhesion molecules in the immunopathogenesis of atherosclerosis. Pol Tyg Lek. 1994;49:357–9.

    PubMed  CAS  Google Scholar 

  18. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol. 2008;76:1590–611.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL, et al. Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci Lett. 2008;447:48–53.

    Article  PubMed  CAS  Google Scholar 

  20. Yodkeeree S, Ampasavate C, Sung B, Aggarwal BB, Limtrakul P. Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. Eur J Pharmacol. 2010;627:8–15.

    Article  PubMed  CAS  Google Scholar 

  21. Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod. 1998;61:1531–4.

    Article  PubMed  CAS  Google Scholar 

  22. Devasena T, Rajasekaran KN, Gunasekaran G, Viswanathan P, Menon VP. Anticarcinogenic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione a curcumin analog on DMH-induced colon cancer model. Pharmacol Res. 2003;47:133–40.

    Article  PubMed  CAS  Google Scholar 

  23. Yodkeeree S, Chaiwangyen W, Garbisa S, Limtrakul P. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem. 2009;20:87–95.

    Article  PubMed  CAS  Google Scholar 

  24. Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost. 2008;100:101–9.

    PubMed  CAS  Google Scholar 

  25. Kim TH, Bae JS. Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food Chem Toxicol. 2010;48:1682–7.

    Article  PubMed  CAS  Google Scholar 

  26. Akeson AL, Woods CW. A fluorometric assay for the quantitation of cell adherence to endothelial cells. J Immunol Methods. 1993;163:181–5.

    Article  PubMed  CAS  Google Scholar 

  27. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res. 2002;90:1222–30.

    Article  PubMed  CAS  Google Scholar 

  28. Berman RS, Frew JD, Martin W. Endotoxin-induced arterial endothelial barrier dysfunction assessed by an in vitro model. Br J Pharmacol. 1993;110:1282–4.

    PubMed  CAS  Google Scholar 

  29. Goldblum SE, Ding X, Brann TW, Campbell-Washington J. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis. J Cell Physiol. 1993;157:13–23.

    Article  PubMed  CAS  Google Scholar 

  30. Gearing AJ, Newman W. Circulating adhesion molecules in disease. Immunol Today. 1993;14:506–12.

    Article  PubMed  CAS  Google Scholar 

  31. Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J. 1995;9:866–73.

    PubMed  CAS  Google Scholar 

  32. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 1995;9:899–909.

    PubMed  CAS  Google Scholar 

  33. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol. 1993;143:1551–9.

    PubMed  CAS  Google Scholar 

  34. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8:504–12.

    PubMed  CAS  Google Scholar 

  35. Sawa Y, Sugimoto Y, Ueki T, Ishikawa H, Sato A, Nagato T, et al. Effects of TNF-alpha on leukocyte adhesion molecule expressions in cultured human lymphatic endothelium. J Histochem Cytochem. 2007;55:721–33.

    Article  PubMed  CAS  Google Scholar 

  36. Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med. 1993;177:1277–86.

    Article  PubMed  CAS  Google Scholar 

  37. Chen C, Jamaluddin MS, Yan S, Sheikh-Hamad D, Yao Q. Human stanniocalcin-1 blocks TNF-alpha-induced monolayer permeability in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:906–12.

    Article  PubMed  Google Scholar 

  38. Leirisalo-Repo M. The present knowledge of the inflammatory process and the inflammatory mediators. Pharmacol Toxicol. 1994;75(Suppl 2):1–3.

    Article  PubMed  CAS  Google Scholar 

  39. Tavadyan LA, Galoian KA, Harutunyan LA, Tonikyan HG, Galoyan AA. Antioxidant and electron donating function of hypothalamic polypeptides: galarmin and Gx-NH2. Neurochem Res. 2010;35:947–52.

    Article  PubMed  CAS  Google Scholar 

  40. Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 2007;30:74–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995;94:79–83.

    Article  PubMed  CAS  Google Scholar 

  42. Jeong JM, Choi CH, Kang SK, Lee IH, Lee JY, Jung H. Antioxidant and chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and structure–activity relationship. J Pharm Pharm Sci. 2007;10:537–46.

    PubMed  CAS  Google Scholar 

  43. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28:1765–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government [MEST] (No. 2011-003410, 2011-0026695, 2011-0030124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Responsible Editor: Ian Ahnfelt-Rønne.

D.-C. Kim and S.-K. Ku equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DC., Ku, SK., Lee, W. et al. Barrier protective activities of curcumin and its derivative. Inflamm. Res. 61, 437–444 (2012). https://doi.org/10.1007/s00011-011-0430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0430-6

Keywords

Navigation