Skip to main content
Log in

New Existence of Solutions for the Fractional p-Laplacian Equations with Sign-Changing Potential and Nonlinearity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the present paper, we consider the fractional p-Laplacian equation

$$(-\Delta)_{p}^{s}u + V(x)|u|^{p-2}u = f(x, u),\quad \forall \in R^{N},$$
(1.1)

where \({p \geq 2, N \geq 2}\), \({0 < s < 1}\), \({V \in C(R^N, R)}\) and \({f \in C(R^N \times R, R)}\) are allowed to be sign-changing. In such a double sign-changing case, a new result on the existence of nontrivial solutions for Eq. (1.1) is obtained via variational methods, which is even new for p =  2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laskin N.: Fractional quantum mechanics and L\({\acute{e}}\)vy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Laskin N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  3. Felmer P., Quaas A., Tan J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh, Sect. A 142, 1237–1262(2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dipierro S., Palatucci G., Valdinoci E.: Existence and symmetry results for a Schr"odinger type problem involving the fractional Laplacian. Matematiche 68(1), 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Gou T., Sun H.: Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti–Rabinowitz condition. Appl. Math. Comput. 257, 409–416 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Cheng M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Secchi S.: Ground state solutions for nonlinear fractional Schrödinger equations in R N. J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Secchi, S.: On fractional Schrödinger equations in R N without the Ambrosetti–Rabinowitz condition. Topol. Methods Nonlinear Anal. (2015). doi:10.12775/TMNA.2015.09

  9. Teng K.: Multiple solutions for a class of fractional Schrödinger equations in R N. Nonlinear Anal. Real World Appl. 21, 76–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu J., Wei Z., Dong W.: Existence of weak solutions for a fractional Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 22, 1215–1222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, W., Xu, J., Wei, Z.: Infinitely many weak solutions for a fractional Schrödinger equation. Boundary Value Prob. (159) (2014)

  12. Shang X., Zhang J.: Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ. 258, 1106–1128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shang X., Zhang J.: On fractional Schrödinger equation in R N with critical growth. J. Math. Phys. 54, 121502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iannizzotto, A., Liu, S., Perera, F., Squassina, M.: Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calculus Var. (2014). doi:10.1515/acv-2014-0024

  15. Hua Y., Yu X.: On the ground state solution for a critical fractional Laplacian equation. Nonlinear Anal. 87, 116–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Autuori G., Pucci P.: Elliptic problems involving the fractional Laplacian in R N. J. Differ. Equ. 255, 2340–2362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang X., Wang Z.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54, 061504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Torres, C.: On superlinear fractional p-Laplacian in R N (2014). arXiv:1412.3392

  20. Franzina, G., Palatucci, G.: Fractional p-eigenvalues. Riv. Mat. Univ. Parma (2014) (in press)

  21. Souza, M.: On a class of nonhomogeneous fractional quasilinear equations in R N with exponential growth. Springer, New York (2014). doi:10.1007/s00030-014-0293-y

  22. Xu, J., We, Z., Dong, W.: Weak solutions for a fractional p-Laplacian equation with sign-changing potential. Taylor & Francis, Abingdon (2015). doi:10.1080/17476933.2015.1076808

  23. Bartsch T., Wang Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on R N. Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Q., Xu B.: Multiplicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential. J. Math. Anal. Appl. 377, 834–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang W., Tang X., Zhang J.: Infinitely many solutions for fourth-order elliptic equations with general potentials. J. Math. Anal. Appl. 407, 359–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang X.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Costa, D.G., Magalh\({\tilde{a}}\)es, C.A.: Variational elliptic problems which are non-quadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

  28. Zhang X.: Existence and multiplicity of solutions for a class of elliptic boundary value problems. J. Math. Anal. Appl. 410, 213–226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Willem M.: Minimax Theorem. Birkhäuser Boston Inc, Boston (1996)

    Book  MATH  Google Scholar 

  31. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differential Equations. In: CBMS Regional Conf. Ser. in Math., vol.65. American Mathematical Society, Providence (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bitao Cheng.

Additional information

This work is partially supported by the NNFC (11571370, 11361048), YNEF (2014Z153) and YNSF (2013FD046).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Tang, X. New Existence of Solutions for the Fractional p-Laplacian Equations with Sign-Changing Potential and Nonlinearity. Mediterr. J. Math. 13, 3373–3387 (2016). https://doi.org/10.1007/s00009-016-0691-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0691-y

Mathematics Subject Classification

Keywords

Navigation