Skip to main content
Log in

A Clifford Algebraic Framework for Coxeter Group Theoretic Computations

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Real physical systems with reflective and rotational symmetries such as viruses, fullerenes and quasicrystals have recently been modeled successfully in terms of three-dimensional (affine) Coxeter groups. Motivated by this progress, we explore here the benefits of performing the relevant computations in a Geometric Algebra framework, which is particularly suited to describing reflections. Starting from the Coxeter generators of the reflections, we describe how the relevant chiral (rotational), full (Coxeter) and binary polyhedral groups can be easily generated and treated in a unified way in a versor formalism. In particular, this yields a simple construction of the binary polyhedral groups as discrete spinor groups. These in turn are known to generate Lie and Coxeter groups in dimension four, notably the exceptional groups D 4, F 4 and H 4. A Clifford algebra approach thus reveals an unexpected connection between Coxeter groups of ranks 3 and 4. We discuss how to extend these considerations and computations to the Conformal Geometric Algebra setup, in particular for the non-crystallographic groups, and construct root systems and quasicrystalline point arrays. We finally show how a Clifford versor framework sheds light on the geometry of the Coxeter element and the Coxeter plane for the examples of the twodimensional non-crystallographic Coxeter groups I 2(n) and the threedimensional groups A 3, B 3, as well as the icosahedral group H 3. IPPP/12/49, DCPT/12/98

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierre Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une métrique de type (p, q). Annales de l’institut Henri Poincaré (A) Physique théorique, 33 (1) 33, 1980.

  2. Pierre Anglès, Conformal Groups In Geometry And Spin Structures. Progress in Mathematical Physics. Birkhäuser, 2008.

  3. James Emory Baugh, Regular Quantum Dynamics. PhD thesis, Georgia Institute of Technology, 2004.

  4. D. L. D. Caspar and A. Klug, Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962)

    Article  Google Scholar 

  5. Coxeter H.S.M.: Discrete groups generated by reflections. Ann. of Math. 35, 588–621 (1934)

    Article  MathSciNet  Google Scholar 

  6. Pierre-Philippe Dechant, Models of the Early Universe. PhD thesis, University of Cambridge, UK, 2011.

  7. Pierre-Philippe Dechant, Clifford algebra unveils a surprising geometric significance of quaternionic root systems of Coxeter groups. Advances in Applied Clifford Algebras, 23 (2) (2013), 301-321.

  8. Pierre-Philippe Dechant, Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction. ArXiv e-print 1207.7339, 2012.

  9. Pierre-Philippe Dechant, Platonic solids generate their four-dimensional analogues. Acta Cryst. A69 (2013). doi:10.1107/S0108767313021442

  10. Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups. Journal of Physics A: Mathematical and Theoretical 45 (28), 285202, (2012).

  11. Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Affine extensions of non-crystallographic Coxeter groups induced by projection. Journal of Mathematical Physics 54 (2013). [http://dx.doi.org/10.1063/1.4820441]

  12. Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Applications of affine extensions of non-crystallographic Coxeter groups in carbon chemistry and virology. in preparation, 2013.

  13. Pierre-Philippe Dechant, Christoph Luhn, Céline Boehm, and Silvia Pascoli, Discrete anomalies of chiral and binary polyhedral groups and their implications for neutrino and flavour model building. in preparation, 2013.

  14. P. A. M. Dirac, Wave equations in conformal space. The Annals of Mathematics 37 (2) (1936), pp. 429–442.

  15. Chris Doran and Anthony N. Lasenby, Geometric Algebra for Physicists. Cambridge University Press, Cambridge, 2003.

  16. P. G. O. Freund, Introduction to Supersymmetry. Cambridge University Press, Cambridge, April 1988.

  17. D. J. H. Garling, Clifford Algebras: An Introduction. London Mathematical Society Student Texts. Cambridge University Press, 2011.

  18. David Hestenes, Space-Time Algebra. Gordon and Breach, New York, 1966.

  19. David Hestenes, New foundations for classical mechanics; 2nd ed. Fundamental theories of physics. Kluwer, Dordrecht, 1999.

  20. David Hestenes, Point Groups and Space Groups in Geometric Algebra Birkhäuser, Boston, 2002, pages 3–34.

  21. David Hestenes and Jeremy W. Holt, The Crystallographic Space Groups in Geometric Algebra. Journal of Mathematical Physics 48:023514, 2007.

  22. David Hestenes and Garret Sobczyk, Clifford algebra to geometric calculus: a unified language for mathematics and physics. Fundamental theories of physics. Reidel, Dordrecht, 1984.

  23. Eckhard Hitzer and Christian Perwass, Interactive 3D space group visualization with CLUCalc and the Clifford Geometric Algebra description of space groups. Advances in Applied Clifford Algebras 20 (2010), 631–658. 10.1007/s00006-010-0214-z.

  24. J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge University Press, Cambridge, 1990.

  25. Giuliana Indelicato, Paolo Cermelli, David Salthouse, Simone Racca, Giovanni Zanzotto, and Reidun Twarock, A crystallographic approach to structural transitions in icosahedral viruses. Journal of Mathematical Biology (2011), pages 1–29. 10.1007/s00285-011-0425-5.

  26. A. Janner, Towards a classification of icosahedral viruses in terms of indexed polyhedra. Acta Crystallographica Section A 62 (5) 2006, 319–330.

    Google Scholar 

  27. A. Katz, Some local properties of the 3-dimensional Penrose tilings, an introduction to the mathematics of quasicrystals. Academic Press, 1989.

  28. T. Keef and R. Twarock, Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses. J Math Biol 59 (3) (2009), 287–313.

    Google Scholar 

  29. T. Keef, J.Wardman, N.A. Ranson, P. G. Stockley, and R. Twarock, Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta crystallographica. Section A, Foundations of crystallography 69 (Pt 2) (2013), 140-150.

  30. Tom Keef, Pierre-Philippe Dechant, and Reidun Twarock, Packings of solids with non-crystallographic symmetry. in preparation, 2013.

  31. M. Koca, M. Al-Ajmi, and S. Al-Shidhani, Quasi-regular polyhedra and their duals with Coxeter symmetries represented by quaternions ii. The African Review of Physics 6 (0), 2011.

  32. M. Koca, R. Koc, and M. Al-Barwani, Noncrystallographic Coxeter group H 4 in E 8. Journal of Physics A: Mathematical and General 34 dec 2001, 11201–11213.

  33. M. Koca, N. O. Koca, and R. Koç, Quaternionic roots of E 8 related Coxeter graphs and quasicrystals. Turkish Journal of Physics 22 May 1998, 421–436.

  34. Mehmet Koca, Mudhahir Al-Ajmi, and Ramazan Koç, Polyhedra obtained from Coxeter groups and quaternions. Journal of Mathematical Physics 48 (11) 113514, 2007.

  35. Mehmet Koca, Nazife Ozdes Koca, and Ramazan Koç, Catalan solids derived from three-dimensional root systems and quaternions. Journal of Mathematical Physics 51 (4) 043501, 2010.

  36. H. Kroto, Carbon onions introduce new flavour to fullerene studies. Nature 359, (1992), 670–671.

    Google Scholar 

  37. H. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60:Buckminsterfullerene. Nature 318, (1985), 162–163.

  38. E. F. Kustov, V. I. Nefedov, A. V. Kalinin, and G. S. Chernova, Classification system for fullerenes. Russian Journal of Inorganic Chemistry 53 (9) 2008, 1384–1395.

  39. A N Lasenby, Joan Lasenby, and Richard Wareham, A covariant approach to geometry using Geometric Algebra. Technical Report. University of Cambridge Department of Engineering, Cambridge, UK, 2004.

  40. Anthony N. Lasenby, Recent applications of Conformal Geometric Algebra. In Hongbo Li, Peter J. Olver, and Gerald Sommer, editors, Computer Algebra and Geometric Algebra with Applications: 6th InternationalWorkshop, IWMM 2004, Shanghai, China, May 19-21, 2004, volume 3519 of Lecture Notes in Computer Science, pages 298–328. Springer Berlin / Heidelberg, Secaucus, NJ, USA, 2005.

  41. L.S. Levitov and J. Rhyner, Crystallography of quasicrystals; application to icosahedral symmetry. J. Phys. France 49 (49) (1988), 1835–1849.

    Google Scholar 

  42. Jon McCammond and T. Petersen, Bounding reflection length in an affine Coxeter group. Journal of Algebraic Combinatorics pages 1–9. 10.1007/s10801-011-0289-1.

  43. R. V. Moody and J. Patera, Quasicrystals and icosians. Journal of Physics A: Mathematical and General 26 (12), (1993), 2829.

  44. J. Patera and R. Twarock, Affine extensions of noncrystallographic Coxeter groups and quasicrystals. Journal of Physics A: Mathematical and General 35 (2002), 1551–1574.

    Google Scholar 

  45. Ian R. Porteous, Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge, 1995.

  46. M. Senechal, Quasicrystals and Geometry. Cambridge University Press, 1996.

  47. O. P. Shcherbak, Wavefronts and reflection groups. Russian Mathematical Surveys 43 (3) (1988), 149.

  48. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with longrange order and no translational symmetry. Phys. Rev. Lett. 53 (1984), 1951–1953.

    Google Scholar 

  49. P. G. Stockley and R. Twarock, Emerging Topics in Physical Virology. Imperial College Press, 2010.

  50. R. Twarock, New group structures for carbon onions and carbon nanotubes via affine extensions of noncrystallographic Coxeter groups. Phys. Lett. A 300 (2002), 437–444.

    Google Scholar 

  51. R. Twarock, Mathematical virology: a novel approach to the structure and assembly of viruses. Phil. Trans. R. Soc. (364) (2006), 3357–3373.

  52. R. Zandi, D. Reguera, R. F. Bruinsma, W. M. Gelbart, and J. Rudnick, Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. 101 (44) (2004), 15556–15560.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Philippe Dechant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechant, PP. A Clifford Algebraic Framework for Coxeter Group Theoretic Computations. Adv. Appl. Clifford Algebras 24, 89–108 (2014). https://doi.org/10.1007/s00006-013-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0422-4

Keywords

Navigation