Skip to main content

Damage to mammalian cells by proteins that form transmembrane pores

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 107

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 107))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler S, Baker PJ, Pritzl P, Couser WG (1984) Detection of teminal complement components in experimental immune glomerular injury. Kidney Int 26:830–837

    PubMed  Google Scholar 

  • Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack omplex stimulates production of reaktive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77:762–767

    PubMed  Google Scholar 

  • Ahnert-Hilger G, Bhakdi S, Gratzl M (1985) Minimal requirements for exocytosis: a study using PC 12 cells permeabilized with staphylococcal α-toxin. J Biol Chem 260:12730–12734

    PubMed  Google Scholar 

  • Alouf JE (1980) Streptocococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmacol Ther 11:661–717

    Article  PubMed  Google Scholar 

  • Alouf JE, Geoffroy C (1979) Comparative effects of cholesterol and thiocholesterol on streptolysin O. FEMS Microbiol Lett 6:413–416

    Article  Google Scholar 

  • Alouf JE, Raynaud M (1973) Purification and some properties of streptolysin O. Biochimie 55:1187–1193

    PubMed  Google Scholar 

  • Alving CR, Habig WH, Urban KA, Hardegree MC (1979) Cholesterol-dependent tetanolysin damage to liposomes. Biochim Biophys Acta 551:224–228

    PubMed  Google Scholar 

  • Amiguet TP, Brunner J, Tschopp J (1985) The membrane attack complex of complement: lipid insertion of tubular and non-tubular polymerized C9. Biochemistry 24:7328–7334

    Article  PubMed  Google Scholar 

  • Andersen BR, Amirault JJ (1976) Decreased E-rosette formation following streptolysin O treatment. Proc Soc Exp Biol Med 153:405–407

    PubMed  Google Scholar 

  • Andersen BR, Cone R (1974) Inhibition of human lymphocyte blast transformation by streptolysin O. J Lab Clin Med 84:241–248

    PubMed  Google Scholar 

  • Arbuthnott JP, Freer JH, Bernheimer AW (1967) Physical states of staphylococcal α-toxin. J Bacteriol 94:1170–1177

    PubMed  Google Scholar 

  • Arbuthnott JP, Freer JH, Billcliffe B (1973) Lipid-induced polymerization of staphylococcal α-toxin. J Gen Microbiol 75:309–319

    PubMed  Google Scholar 

  • Bader MF, Thierse D, Aunis D, Ahnert-Hilger G, Gratzl M (1986) Characterization of hormone and protein release from α-toxin permeabilized chromaffin cells in primary culture. J Biol Chem 261:5777–5783

    PubMed  Google Scholar 

  • Baltch AL, Hammer MC, Smith RP, Obrig TG, Conroy JV, Bishop MB, Egy MA, Lutz F (1985) Effects of Pseudomonas aeruginosa cytotoxin on human serum and granulocytes and their microbicidal, phagocytic and chemotactic functions. Infect Immun 48:498–506

    PubMed  Google Scholar 

  • Barnes DW, Silnutzer J (1983) Isolation of human serum spreading factor. J Biol Chem 258:12548–12552

    PubMed  Google Scholar 

  • Barnes DW, Silnutzer J, See C, Shaffer M (1983) Characterization of human serum spreading factor with monoclonal antibody. Proc Natl Acad Sci USA 80:1362–1366

    PubMed  Google Scholar 

  • Bashford CL, Alder GM, Patel K, Pasternak CA (1984) Common action of certain viruses, toxins and activated complement: pore formation and its prevention by extracellular Ca2+. Biosci Rep 4:797–805

    Article  PubMed  Google Scholar 

  • Behnke O, Tranum-Jensen J, van Deurs B (1986a) Filipin as a cholesterol probe. I Morphology of filipin-cholesterol interaction in lipid model systems. Eur J Cell Biol 35:189–199

    Google Scholar 

  • Behnke O, Tranum-Jensen J, van Deurs B (1986b) Filipin as a cholesterol probe. II Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215

    Google Scholar 

  • Benz R (1986) Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 19:145–190

    Google Scholar 

  • Bernheimer AW (1974) Interactions between membranes and cytolytic bacterial toxins. Biochim Biophys Acta 344:27–50

    Google Scholar 

  • Bernheimer AW, Rudy B (1986) Interactions between membranes and cytolytic peptides. Biochim Biophys Acta 864:123–141

    PubMed  Google Scholar 

  • Bhakdi S and Muhly M (1983) A simple immunoradiometric assay for the terminal SC5b-9 complex of human complement. J Immunol Meth 57:283–289

    Article  Google Scholar 

  • Bhakdi S, Roth W (1981) Fluid-phase SC5b-8 complex of human complement: generation and isolation from serum. J Immunol 127:576–582

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1978) Molecular nature of the complement lesion. Proc Natl Acad Sci USA 75:5655–5659

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1979) Evidence for a two-domain structure of the terminal membrane C5b-9 complex of human complement. Proc Natl Acad Sci USA 76:5872–5876

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1980) Re-incorporation of the terminal C5b-9 complement complex into lipid bilayers: formation and stability of reconstituted liposomes. Immunology 41:737–742

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1981) Molecular weight of the membrane C5b-9 complex of human complement: characterization of the terminal complex as a C5b-9 monomer. Proc Natl Acad Sci USA 78:1818–1822

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1983) Membrane damage by complement. Biochim Biophys Acta 737:343–372

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984a) On the cause and nature of C9-related heterogeneity of C5b-9(m) complexes generated on erythrocyte targets through the action of whole human serum. J Immunol 133:1453–1463

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984b) Mechanism of complement cytolysis and the concept of channel-forming proteins. Phil Trans R Soc Lond B 306:311–324

    Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1985) Complement activation and attack on autologous cells induced by streptolysin-O. Infect Immun 48:713–719

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-9 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005

    PubMed  Google Scholar 

  • Bhakdi S, Bjerrum OJ, Rother U, Knüfermann H, Wallach DFH (1975a) Immunochemical analyses of membrane-bound complement: detection of the terminal complement complex and its similarity to intrinsic erythrocyte membrane proteins. Biochim Biophys Acta 406:21–35

    PubMed  Google Scholar 

  • Bhakdi S, Knüfermann H, Wallach DFH (1975b) Two-dimensional separation of erythrocyte membrane proteins. Biochim Biophys Acta 394:550–557

    PubMed  Google Scholar 

  • Bhakdi S, Ey P, Bhakdi-Lehnen B (1976) Isolation of the terminal complement complex from target sheep erythrocyte membranes. Biochim Biophys Acta 419:445–457

    PubMed  Google Scholar 

  • Bhakdi S, Bhakdi-Lehnen B, Bjerrum OJ (1977) Detection of amphiphilic proteins and peptides in complex mixtures: charge-shift crossed immunoelectrophoresis and two-dimensional charge-shift electrophoresis. Biochim Biophys Acta 470:35–44

    PubMed  Google Scholar 

  • Bhakdi S, Bjerrum OJ, Bhakdi-Lehnen B, Tranum-Jensen J (1978) Complement lysis: evidence for an amphiphilic nature of the membrane C5b-9 complex. J Immunol 121:2526–2532

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J, Klump O (1980) The terminal membrane C5b-9 complex of human complement: evidence for the existence of multible protease-resistant polypeptides that form the trans-membrane complement channel. J Immunol 124:2451–2457

    PubMed  Google Scholar 

  • Bhakdi S, Füssle R, Tranum-Jensen J (1981) Staphylococcal α-toxin: oligomerisation of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles. Proc Natl Acad Sci USA 78:5475–5479

    PubMed  Google Scholar 

  • Bhakdi S, Füssle R, Utermann G, Tranum-Jensen J (1983a) Binding and partial inactivation of S. aureus α-toxin by human plasma low density lipoprotein. J Biol Chem 258:5899–5904

    PubMed  Google Scholar 

  • Bhakdi S, Muhly M, Roth M (1983b) Isolation of specific antibodies to complement components. Methods Enzymol 93:409–420

    PubMed  Google Scholar 

  • Bhakdi S, Muhly M, Füssle R (1984a) Membrane damage by staphylococcal α-toxin: correlation between toxin-binding and hemolytic activity. Infect Immun 46:318–323

    PubMed  Google Scholar 

  • Bhakdi S, Roth M, Sziegoleit A, Tranum-Jensen J (1984b) Streptolysin-O: isolation and identification of two hemolytic forms. Infect Immun 46:394–400

    PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    PubMed  Google Scholar 

  • Bhakdi S, Mackman N, Nicaud JM, Holland IB (1986) E. coli hemolysin damages target cell membranes by generating trans-membrane. pores. Infect Immun 52:63–69

    PubMed  Google Scholar 

  • Biesecker G (1983) Biology of disease. Membrane attack complex of complement as a pathologic mediator. Lab Invest 49:237–249

    PubMed  Google Scholar 

  • Biesecker G, Müller-Eberhard HJ (1980) The ninth component of human complement: purification and physicochemical characterization. J Immunol 124:1291–1296

    PubMed  Google Scholar 

  • Biesecker G, Katz S, Koffler D (1981) Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J Exp Med 154:1779–1794

    Article  PubMed  Google Scholar 

  • Biesecker G, Gerard G, Hugli TE (1982a) An amphiphilic structure of the ninth component of human complement. J Biol Chem 257:2584–2590

    PubMed  Google Scholar 

  • Biesecker G, Lavin L, Ziskind M, Koffler D (1982b) Cutaneous localization of the membrane attack complex in discoid and systemic lupus erythematosus. N Engl J Med 306:264–270

    PubMed  Google Scholar 

  • Biesecker G, Noble B, Andres GA, Koffler D (1984) Immunopathogenesis of Heymann's nephritis. Clin Immunol Immunopathol 33:333–338

    Article  PubMed  Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500

    PubMed  Google Scholar 

  • Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Liposomes as targets for granule cytolysin from cytotoxic LGL tumors. Proc Natl Acad Sci USA 81:5551–5555

    PubMed  Google Scholar 

  • Borsos T, Dourmashkin RR, Humphrey JH (1964) Lesions in erythrocyte membranes caused by immune hemolysis. Nature 202:251–254

    Google Scholar 

  • Boyer JT, Gall EP, Norman ME, Nilsson UR, Zimmermann TS (1975) Hereditary deficiency of the seventh component of complement. J Clin Invest 56:905–913

    PubMed  Google Scholar 

  • Boyle MDP, Borsos T (1979) Studies on the terminal stages of immune hemolysis. V. Evidence that not all complement-produced channels are equal. J Immunol 123:71–76

    PubMed  Google Scholar 

  • Boyle MDP, Langone JJ, Borsos T (1978) Studies on the terminal stages of immune hemolysis. III Distinction between the insertion of C9 and the formation of a transmembrane channel. J Immunol 120: 1721–1725

    PubMed  Google Scholar 

  • Boyle MDP, Gee AP, Borsos T (1979) Studies on the terminal stages of immune hemolysis. VI. Osmotic blocks of differing Stokes' radii detect complement-induced transmembrane channels of differing size. J Immunol 123:77–82

    PubMed  Google Scholar 

  • Boyle MDP, Gee AP, Borsos T (1981) Heterogeneity in the size and stability of transmembrane channels produced by whole complement. Clin Immunol Immunopathol 20:287–295

    Article  PubMed  Google Scholar 

  • Bremm KD, König W, Pfeiffer P, Rauschen I, Theobald K, Thelestam M, Alouf JE (1985) Effect of thiol-activated toxins (streptolysin O, alveolysin, and theta toxin) on the generation of leukotrienes and leukotriene-inducing and-metabolizing enzymes from human polymorphonuclear granulocytes. Infect Immun 50:844–851

    PubMed  Google Scholar 

  • Buckelew AR, Colaccico G (1971) Lipid monolayers. Interaction with staphylococcal α-toxin. Biochim Biophys Acta 233:7–16

    PubMed  Google Scholar 

  • Buckingham L, Duncan JL (1983) Approximate dimensions of membrane lesions produced by streptolysin-S and streptolysin-O. Biochim Biophys Acta 729:115–122

    PubMed  Google Scholar 

  • Campbell AK, Morgan BP (1985) Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature 317:164–166

    Article  PubMed  Google Scholar 

  • Carney DJ, Koski CL, Shin ML (1985) Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance diffrers for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol 134:1804–1809

    PubMed  Google Scholar 

  • Carney DF, Hammer CH, Shin ML (1986) Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J Immunol 137:263–270

    PubMed  Google Scholar 

  • Cassidy P, Six HR, Harshman S (1976) Studies on the binding of staphylococcal 125I-labelled α-toxin to rabbit erythrocytes. Biochemistry 15:2348–2355

    Article  PubMed  Google Scholar 

  • Cavalieri SJ, Bohach GA, Snyder IS (1984) Escherichia coli α-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 48:326–343

    PubMed  Google Scholar 

  • Cheng KH, Wiedmer T, Sims PJ (1985) Fluorescence resonance energy transfer study of the associative state of membrane-bound complexes of complement proteins C5b-8. J Immunol 135:459–464

    PubMed  Google Scholar 

  • Cosyns JP, Kazatchkine MD, Bhakdi S, Mandet C, Grossetete J, Hinglais N, Bariety J (1986) Immunohitochemical analysis of C3-cleavage fragments, factor H, and the C5b-9 terminal complex of complement in de novo membranous glomerulonephritis occurring in patients with renal transplant. Clin Nephrol 26:203–209

    PubMed  Google Scholar 

  • Couser WG, Baker PJ, Adler S (1985) Complement and the direct mediation of immune glomerular injury: a new perspective. Kidney Int 28:879–890

    PubMed  Google Scholar 

  • Cowell JL, Bernheimer AW (1977) Antigenetic relationships among thiol-activated cytolysins. Infect Immun 16:397–399

    PubMed  Google Scholar 

  • Cowell JL, Kim KS, Bernheimer AW (1978) Alteration by cereolysin of the structure of cholesterol-containing membranes. Biochim Biophys Acta 507:230–241

    PubMed  Google Scholar 

  • Cramer WA, Dankert JR, Uratani Y (1983) the membrane channel-forming bacteriocidal protein, colicin E1. Biochim Biophys Acta 737:173–193

    PubMed  Google Scholar 

  • Cybulsky AV, Rennke HG, Feintzeig ID, Salant DJ (1986) Complement-induced glomerular epithelial cell injury. J Clin Invest 77:1096–1107

    PubMed  Google Scholar 

  • Dahl MV, Falk RJ, Carpenter R, Michael AF (1984) Deposition of the membrane attack complex of complement in bullous pemphigoid. J Invest Dermatol 82:132–135

    Article  PubMed  Google Scholar 

  • Dahlbäck B, Podack ER (1985) Characterization of human S protein, an inhibitor of the membrane attack complex of complement. Demonstration of a free reactive thiol group. Biochemistry 24:2368–2374

    Article  PubMed  Google Scholar 

  • Dalmasso AP, Bension BA (1981) Lesions of different functional size produced by human and guinea pig complement in sheep red cell membranes. J Immunol 127:2214–2218

    PubMed  Google Scholar 

  • Dankert JR, Esser AF (1985) Protelytic modification of human complement protein C9: loss of poly (C9) and circular lesion formation without impairment of function. Proc Natl Acad Sci USA 82:2128–2132

    PubMed  Google Scholar 

  • DeHeer E, Daha MR, Bhakdi S, Bazin H, van Es LA (1985) Possible involvement of terminal complement complex in active Heymann nephritis. Kidney Int 22:388–393

    Google Scholar 

  • Dennert G, Podack ER (1983) Cytolysis by H-2 specific T killer cells: assembly of tubular complexes on target membranes. J Exp Med 157:1483–1495

    Article  PubMed  Google Scholar 

  • Densen P, Brown EJ, O'Neill GJ, Tedesco F, Clark RA, Frank MM, Webb D, Myers J (1983) Inherited deficiency of C8 in a patient with recurrent meningococcal infections: further evidence for a dysfunctional C8 molecule and nonlinkage to the HLA system. J Clin Immunol 3:90–99

    Article  PubMed  Google Scholar 

  • DiScipio RG, Gehring MR, Podack ER, Chen Chen Kan, Hugli TE, Fey GH (1984) Nucleotide sequence of cDNA and derived amino acid sequence of human complement component C9. Proc Natl Acad Sci USA 81:7298–7302

    PubMed  Google Scholar 

  • Dourmashkin RR, Rosse WF (1966) Morphologic changes in the membranes of red blood cells undergoing hemolysis. Am J Med 41:699–710

    Article  PubMed  Google Scholar 

  • Dourmashkin RR, Deteix P, Simone CB, Henkart PA (1980) Electron microscopic demonstration of lesions on target cell membranes associated with antibody-dependent cytotoxicity. Clin Exp Immunol 42:554–560

    PubMed  Google Scholar 

  • Duncan JL (1974) Characteristics of streptolysin O hemolysis: kinetics of hemoglobin and 86rubidium release. Infect Immun 9:1022–1027

    PubMed  Google Scholar 

  • Duncan JL, Buckingham L (1977) Effects of streptolysin O on transport of amino acids, nucleosides and glucose analogs in mammalian cells. Infect Immun 18:688–693

    PubMed  Google Scholar 

  • Duncan JL, Schlegel R (1975) Effect of streptolysin O an erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction. J Cell Biol 67:160–173

    Article  PubMed  Google Scholar 

  • Ehlenberger AG, Nussenzweig V (1977) The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med 145:357–371

    Article  PubMed  Google Scholar 

  • Engel AG, Bisecker G (1982) Complement activation in muscle fiber necrosis: demonstration of the membrane attack complex of complement in necrotic fibers. Ann Neurol 12:289–296

    Article  PubMed  Google Scholar 

  • Esser AF (1983) Interactions between complement proteins and biological and model membranes. In: Chapman CC (ed) Biological membranes, vol 4. Academic, New York, pp 277–322

    Google Scholar 

  • Falk RJ, Dalmasso AP, Kim Y, Tasi Ch, Scheinman JI, Gewurz H, Michael AF (1983) Neoantigen of the polymerized ninth component of complement. Characterization of a monoclonal antibody and immunohistochemical localization in renal disease. J Clin Invest 72:560–573

    PubMed  Google Scholar 

  • Faulstich H, Bühring HJ, Seitz J (1983) Physical properties and function of phallolysin. Biochemistry 22:4574–4580

    Article  PubMed  Google Scholar 

  • Fearon DT (1979) Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membranes. Proc Natl Acad Sci USA 76:5867–5871

    PubMed  Google Scholar 

  • Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B-lymphocyte and monocyte. J Exp Med 152:20–30

    Article  PubMed  Google Scholar 

  • Fearon DT (1985) Human complement receptors for C3b (CR1) and C3d (CR2). J Invest Dermatol 85:533–569

    Article  Google Scholar 

  • Fearon DT, Kaneko I, Thompson G (1981) Membrane distribution and adsorptive endocytosis by C3b receptors on human polymorphonuclear leukocytes. J Exp Med 153:1615–1628

    Article  PubMed  Google Scholar 

  • Felmlee T, Pellet S, Welch R (1985) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105

    PubMed  Google Scholar 

  • Fischer E, Kazatchkine MD, Mecarelli-Halbwuchs L (1984) Protection of the classical and alternative complement pathway C3-convertases, stabilized by nephritic factors, from decay by the human C3b receptor. Eur J Immunol 14:1111–1114

    PubMed  Google Scholar 

  • Freer JH, Arbuthnott JP, Bernheimer AW (1968) Interaction of staphylococcal α-toxin with artificial and natural membranes. J Bacteriol 95:1153–1168

    PubMed  Google Scholar 

  • Freer JH, Arbuthnott JP, Billcliffe B (1973) Effects of staphylococcal α-toxin on the structure of erythrocyte membranes: a biochemical and freeze-etching study. J Gen Microbiol 75:321–332

    PubMed  Google Scholar 

  • Fried FA, Vermeulen CW, Ginsburg MJ, Cone CM (1971) Etiology of pyelonephritis: further evidence associating the production of experimental pyelonephritis with hemolysis in Escherichia coli. J Urol 106:351–354

    PubMed  Google Scholar 

  • Füssle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by S. aureus α-toxin. J Cell Biol 91:83–94

    Article  PubMed  Google Scholar 

  • Giavedonie EB, Chow YM, Dalmasso AP (1979) The functional size of the primary complement lesion in resealed erythrocyte membrane ghosts. J Immunol 122:240–245

    PubMed  Google Scholar 

  • Gigli I, Nelson RA (1968) Complement dependent immune phagocytosis. Exp Cell Res 51:45–67

    Article  PubMed  Google Scholar 

  • Goebel W, Hedgepeth J (1982) Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J Bacteriol 151:1290–1298

    PubMed  Google Scholar 

  • Goldlust MB, Shin HS, Hammer CH, Mayer MM (1974) Studies of complement complex C5b6 eluted from EAC-6; reaction of C5b,6 with EAC 4b, 3b and evidence on the role of C2a and C3b in the activation of C5. J Immunol 113:998–1007

    PubMed  Google Scholar 

  • Gonzalez-Carrero MI, Zabala JC, de la Cruz F, Oritz JM (1985) Purification of α-haemolysin from an overproducing E. coli strain. Mol Gen Genet 199:106–110

    Article  PubMed  Google Scholar 

  • Gray GS, Kehoe M (1984) Primary sequence of the α-toxin gene from staphylococcus aureus wood 46. Infect Immun 46:615–618

    PubMed  Google Scholar 

  • Green H, Barrow P, Goldberg B (1959) Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med 110:699–712

    Article  PubMed  Google Scholar 

  • Groggel GC, Adler S, Rennke HG, Couser WG, Salant DJ (1983) Role of the terminal complement pathway in experimental membranous nephropathy in the rabbit. J Clin Invest 72:1948–1957

    PubMed  Google Scholar 

  • Groggel GC, Salant DJ, Darby C, Rennke HG, Couser WG (1985) Role of terminal complement pathway in the heterologous phase of antiglomerular basement membrane nephritis. Kidney Int 27:643–651

    PubMed  Google Scholar 

  • Gupta RK, Srimal RC (1979) Effect of intraventricular administration of streptolysin O on the electroencephalogram of rabbits. Toxicon 17:321–325

    Article  PubMed  Google Scholar 

  • Haberman E (1972) Bee and wasp venoms. Science 177:314–322

    PubMed  Google Scholar 

  • Hacker J, Hughes C, Hof H, Goebel W (1983) Cloned hemolysin genes from Escherichia coli that cause urinary tract infection determine different levels of toxicity in mice. Infect Immun 42:57–63

    PubMed  Google Scholar 

  • Haeney MR, Thompson RA, Faulkner J, Mackintosh P, Ball AP (1980) Recurrent bacterial meningitis in patients with genetic defects of terminal complement components. Clin Exp Immunol 40:16–24

    PubMed  Google Scholar 

  • Halbert SP, Bircher R, Dahle E (1963a) Studies on the mechanism of the lethal toxic action of streptolysin O and the protection by certain serotonin drugs. J Lab Clin Med 437–452

    Google Scholar 

  • Halbert SP, Dahle E, Keatinge S, Bircher R (1963b) Studies on the role of potassium ions in the lethal toxicity of streptolysin O. In: Raskova H (ed) Recent advances in pharmacology toxins. Pergamon, Oxford, pp 439–453

    Google Scholar 

  • Halpern BN, Rahman S (1968) Studies on the cardiotoxicity of streptolysin O. Br J Pharmacol 32:441–452

    Google Scholar 

  • Hammer CH, Nicholson A, Mayer MM (1975) On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b-6, 7 complex into the phospholipid bilayer of erythrocyte membranes. Proc Natl Acad Sci USA 72:5076–5080

    PubMed  Google Scholar 

  • Hammer CH, Wirtz GH, Renfer L, Gresham HD, Tack BF (1981) Large scale isolation of functionally active components of the human complement system. J Biol Chem 256:3995–4006

    PubMed  Google Scholar 

  • Hänsch GM, Hammer CH, Vanguri P, Shin ML (1981) Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci USA 78:5118–5122

    PubMed  Google Scholar 

  • Hänsch GM, Seitz M, Martinotti G, Betz MM, Rauterberg EW, Gemsa D (1984) Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol 133:2145–2150

    PubMed  Google Scholar 

  • Hänsch GM, Gemsa D, Resch K (1985) Induction of prostanoid synthesis in human platelets by the late complement components C5b-9 and channel-forming antibiotic nystatin: inhibition of the eacylation of liberated arachidonic acid. J Immunol 135:1320–1324

    PubMed  Google Scholar 

  • Harshman S (1979) Action of staphylococcal α-toxin on membranes: some recent advances. Mol Cell Biochem 23:142–152

    Article  Google Scholar 

  • Harshman S, Sugg N (1985) Effect of calcium ions on staphylococcal alpha-toxin induced hemolysis of rabbit erythrocytes. Infect Immun 47:37–40

    PubMed  Google Scholar 

  • Harshman S, Burt AM, Robinson JP, Blankenship M, Harshman DL (1985) Disruption of myelin sheaths in mouse brain in vitro and in vivo by staphylococcal α-toxin. Toxican 23:801–806

    Article  Google Scholar 

  • Haydon DA and Hladky SB (1972) Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys 5:187–282

    PubMed  Google Scholar 

  • Hayman EG, Engvall E, A'Hearn E, Barnes D, Pierschbacher M, Ruoslahti E (1982) Cell attachment on replicas of SDS-polyacrylamide gels reveals two adhesive plasma proteins. J Cell Biol 95:20–23

    Article  PubMed  Google Scholar 

  • Hayman EG, Pierschbacher MD, Öhgren Y, Ruoslahti E (1983) Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci USA 80:4003–4007

    PubMed  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  Google Scholar 

  • Helenius A, Simons K (1977) Charge-shift electrophoresis: a simple method for distinguishing between hydrophilic and amphiphilic proteins in detergent solution. Proc Natl Acad Sci USA 74:529–533

    PubMed  Google Scholar 

  • Helenius A, Kartenbeck J, Simons K, Kries E (1980) On the entry of Semliki Forest Virus into BHK-21 cells. J Cell Biol 84:404–420

    Article  PubMed  Google Scholar 

  • Henkart P (1985) Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol 3:31–58

    Article  PubMed  Google Scholar 

  • Henkart P, Blumenthal R (1975) The interaction of lymphocytes with lipid bilayer membranes: a model for the lymphocyte-mediated lysis of target cells. Proc Natl Acad Sci USA 72:2789–2793

    PubMed  Google Scholar 

  • Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984) Cytolytic activity of purified cytoplasmic granules from cytotoxic rat LGL tumors. J Exp Med 160:75–93

    Article  PubMed  Google Scholar 

  • Henney CS (1973) Studies on the mechanism of lymphocyte-mediated cytolysis. II The use of various target cell markers to study cytolytic events. J Immunol 110:73–84

    PubMed  Google Scholar 

  • Henney CS (1974) Estimation of the size of a T-cell-induced lytic lesion. Nature 249:456–458

    Article  PubMed  Google Scholar 

  • Herbert D, Todd EW (1941) Purification and properties of a haemolysin produced by group a hemolytic streptococci (streptolysin O). Biochem J 35:1124–1139

    Google Scholar 

  • Hewitt LF, Todd EW (1939) The effect of cholesterol and of sera contaminated with bacteria on the haemolysins produced by haemolytic streptococci. J Path Bacteriol 49:45–51

    Article  Google Scholar 

  • Hill JH, Ward PA (1971) The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133:885–900

    Article  PubMed  Google Scholar 

  • Hinglais N, Kazatchkine MD, Bhakdi S, Appay MD, Mandet C, Grossetete J, Bariety J (1986) Immunohistochemical study of the C5b-9 complex of complement in normal and diseased human kidneys: diversity in localization and potential in tissue damage. Kidney Int 30:399–410

    PubMed  Google Scholar 

  • Hladky SB, Haydon DA (1972) Ion ttransfer across lipid membranes in the presence of gramicidin A. I. Studies on the unit conductance channel. Biochim Biophys Acta 274:294–312

    PubMed  Google Scholar 

  • Holmes R (1967) Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cells in vitro. J Cell Biol 32:297–308

    Article  PubMed  Google Scholar 

  • Howard P, Buckley JT (1982) Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry 21:1662–1667

    Article  PubMed  Google Scholar 

  • Howard JG, Wallace KR, Wright GP (1953) The inhibitory effects of cholesterol and related sterols on haemolysis by streptolysin O. Br J Exp Pathol 34:174–180

    PubMed  Google Scholar 

  • Hu V, Nicholson-Weller A (1985) Enhanced complement-mediated lysis of type III paroxysmal nocturnal hemoglobinuria erythrocytes involves increased C9-binding and polymerization. Proc Natl Acad Sci USA 82:5520–5524

    PubMed  Google Scholar 

  • Hu V, Esser AF, Podack ER, Wisnieski BJ (1981) The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol 127:380–384

    PubMed  Google Scholar 

  • Hughes C, Hacker J, Robert A, Goebel W (1983) Hemolysin production as a virulence marker in symptomatic and asymptomatic urinary tract infections caused by Escherichia coli. Infect Immun 39:546–551

    PubMed  Google Scholar 

  • Hügli T, Müller-Eberhard HJ (1978) Anphylatoxins: C3a and C5a. Adv Immunol 26:1–55

    PubMed  Google Scholar 

  • Hugo F, Jenne D, Bhakdi S (1985) Monoclonal antibodies to neoantigens of the C5b-9 complex of human complement. Biosci Rep 5:649–658

    Article  PubMed  Google Scholar 

  • Hugo F, Reichwein J, Arvand M, Krämer S, Bhakdi S (1986) Mode of transmembrane pore formation by streptolysin-O analysed with a monoclonal antibody. Infect Immun 54:641–645

    PubMed  Google Scholar 

  • Humphrey JH, Dourmashkin RR (1969) The lesions in cell membranes caused by complement. Adv Immunol 11:75–115

    PubMed  Google Scholar 

  • Imagawa DK, Osifchin NE, Paznekas WA, Shin ML, Mayer MM (1983) Consequences of cell membrane attack by complement: release of arachidonate and formation of inflammatory derivatives. Proc Nat Acad Sci USA 80:6647–6651

    PubMed  Google Scholar 

  • Imagawa DK, Osifchin NE, Ramm LE, Koga PG, Hammer CH, Shin HS, Mayer MM (1986) Release of arachidonic acid and formation of oxygenated derivatives after complement attack on macrophages: role of channel formation. J Immunol 136:4637–4643

    PubMed  Google Scholar 

  • Inoue K, Kinoshita T, Okada M, Akiyama Y (1977) Release of phospholipids from complement-mediated lesions on the furface structure of Escherichia coli. J Immunol 119:65–72

    PubMed  Google Scholar 

  • Ishida B, Wisnieski JB, Lavine H, Esser AF (1982) Photolabeling of a hydrophobic domain of the ninth component of human complement. J Biol Chem 257:10551–10553

    PubMed  Google Scholar 

  • Jasin HE (1977) Absence of the eighth component of complement in association with systemic lupus erythematosus-like disease: J Clin Invest 60:709–715

    PubMed  Google Scholar 

  • Jeljaszewicz J, Szmigielski S, Hryniewicz W (1978) Biological effects of staphylococal and streptococcal toxins. In: Jeljaszewicz J, Wadström T (eds) Bacterial toxins and cell membranes. Academic, New York, pp 185–227

    Google Scholar 

  • Jenne D, Stanley KK (1985) Molecular cloning of S-protein, a link between complement coagulation and cell-substrate adhesion. EMBO J 4:3153–3157

    PubMed  Google Scholar 

  • Jenne D, Hugo F, Bhakdi S (1985) Interaction of complement S-protein with thrombin-antithrombin complexes: a role for the S-protein in haemostasis. Thromb Res 38:401–412

    Article  PubMed  Google Scholar 

  • Johnson MK, Geoffroy C, Alouf JE (1980) The binding of cholesterol by sulfhydrylactivated cytolysins. Infect Immun 27:97–101

    PubMed  Google Scholar 

  • Jorgensen SE, Mulcahy PF, Wu GK, Louis CF (1983) Calcium accumulation in human and sheep erythrocytes that is induced by Escherichia coli hemolysin. Toxicon 21:717–727

    Article  PubMed  Google Scholar 

  • Kagan BL, Finkelstein A, Colombini M (1981) Diphtheria fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78:4950–4954

    PubMed  Google Scholar 

  • Kazatchkine J, Nydegger UE (1982) The human alternative complement pathway. Prog Allergy 30:193–222

    PubMed  Google Scholar 

  • Kehoe M, Timmis KN (1984) Cloning and expression in E. coli of the streptolysin-O determinant from streptococcus pyogenes. Infect Immun 43:804–810

    PubMed  Google Scholar 

  • Kinoshita T, Inoue K, Okada M, Akiyama Y (1977) Release of phospholipids from liposomal model membrane damaged by antibody and complement. J Immunol 119:65–72

    PubMed  Google Scholar 

  • Kinsky SC (1970) A Ntibiotic interaction with model membranes. Annu Rev Pharmacol 10:119–142

    Article  PubMed  Google Scholar 

  • Kinsky SC (1972) Antibody-complement interaction with lipid model membranes. Biochim Biophys Acta 265:1–23

    PubMed  Google Scholar 

  • Kissel JT, Mendell JR, Rammohan KW (1986) Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 314:329–334

    PubMed  Google Scholar 

  • Koffler D, Biesecker G, Noble B, Andres GA, Martinze-Hernandez A (1983) Localization of the membrane attack complex in experimental immune complex glomerulonephritis. J Exp Med 157:1885–1905

    Article  PubMed  Google Scholar 

  • Kolb WP, Müller-Eberhard HJ (1973) The membrane attack mechanism of complement. Verification of a stable C5-C9 complex in free solution. J Exp Med 138:438–451

    Article  PubMed  Google Scholar 

  • Kolb WP, Müller-Eberhard HJ (1974) Mode of action of C9: adsorption of multiple C9 molecules to cell-bound C8. J Immunol 113:479–488

    PubMed  Google Scholar 

  • Kolb WP, Müller-Eberhard HJ (1975a) The membrane attack mechanism of complement. Isolation and subunit composition of the C5b-9 complex. J Exp Med 141:724–735

    PubMed  Google Scholar 

  • Kolb WP, Müller-Eberhard HJ (1975b) Neoantigens of the membrane attack complex of human complement. Proc Natl Acad Sci USA 72:1687–1691

    PubMed  Google Scholar 

  • Kolb WP, Haxby JA, Arroyave CM, Müller-Eberhard HJ (1972) Molecular analysis of the membrane attack mechanism of complement. J Exp Med 135:549–566

    Article  PubMed  Google Scholar 

  • Konisky J (1982) Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol 36:125–144

    Article  PubMed  Google Scholar 

  • Kopp WC, Burrell R (1982) Evidence for antibody-dependent binding of the terminal complement component to alveolar basement membrane. Clin Immunol Immunopathol 23:10–21

    Article  PubMed  Google Scholar 

  • Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML (1983) Cytolysis of nucleated cells by complement cell death displays multi-hit characteristics. Proc Natl Acad Sci USA 80:3816–3820

    PubMed  Google Scholar 

  • Lachman RJ, Thompson RA (1970) Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C5b and the participation of C8 and C9. J Exp Med 131:643–657

    Article  PubMed  Google Scholar 

  • Lachmann PJ, Munn EA, Weissmann G (1970) Complement-mediated lysis of liposomes produced by the reactive procedure. Immunology 19:983–986

    PubMed  Google Scholar 

  • Lachmann PJ, Bowyer DE, Nichol P, Dawson RMC, Munn EA (1973) Studies on the terminal stages of complement lysis. Immunology 24:135–145

    PubMed  Google Scholar 

  • Latorre R, Alvarez O (1981) Voltage-dependent channels in planar bilayer membranes. Physiol Rev 61:77–150

    PubMed  Google Scholar 

  • Lauf PK (1975) Immunological and physiological characteristics of the rapid immune hemolysis of neuraminidase-treated sheep red cells produced by fresh guinea-pig serum. J Exp Med 142:974–988

    Article  PubMed  Google Scholar 

  • Leddy JP, Frank MM, Gaither T, Baum J, Klemperer MR (1974) Hereditary deficiency of the sixth component of complement in man. I. Immunochemical, biologic and family studies. J Clin Invest 53:544–553

    PubMed  Google Scholar 

  • Lee TJ, Utsinger PD, Snyderman R, Yount WJ, Sparling RF (1978) Familial deficiency of the seventh component of complement associated with recurrent bacteremic infections due to neisseria. J Infect Dis 138:359–368

    PubMed  Google Scholar 

  • Lim D, Gewurz A, Lint TF, Ghaze M, Sepheri B, Gewurz H (1976) Absence of the sixth component of complement in a patient with repeated episodes of meningococcal meningitis. J Pediatrics 89:42–47

    Google Scholar 

  • Linder R (1979) Heterologous immunoaffinity chromatography in the purification of streptolysin O. FEMS Microbiol Lett 5:339–342

    Article  Google Scholar 

  • Lint TF, Zeitz HJ, Gewurz H (1980) Inherited deficiency of the ninth component of complement in man. J Immunol 125:2252–2257

    PubMed  Google Scholar 

  • Logue GL, Rosse WF, Adams JP (1974) Mechanisms of immune lysis of red blood cells in vitro. I. Paroxysmal nocturnal hemoglobinuria cells. J Clin Invest 52:1129–1137

    Google Scholar 

  • Loirat C, Buriot D, Peltier AP, Birche P, Aujard Y, Griscelli C, Mathiew H (1980) Fulminant meningococcemia in child with hereditary deficiency of the seventh component of complement and proteinuria. Acta Paediatr Scand 69:553–557

    PubMed  Google Scholar 

  • Lutz F, Grieshaber S, Schmidt K (1982) Permeability changes of Ehrlich mouse ascites tumor cells induced by cytotoxin from Pseudomonas aeruginosa. Naunyn-Schmiedebergs Arch Pharmacol 320:78–80

    Article  PubMed  Google Scholar 

  • Lynch EC, Rosenberg IM, Gitler C (1982) An ion-channel forming protein produced by Entamoeba histolytica. EMBO J 1:801–804

    PubMed  Google Scholar 

  • Mackman N, Holland IB (1984) Functional characterization of a cloned haemolysin determinant from E. coli of human origin, encoding information for the secretion of a 107K polypeptide. Mol Gen Genet 196:123–134

    Article  PubMed  Google Scholar 

  • Mackman N, Nicaud JM, Gray L, Holland IB (1986) Secretion of hemolysin by E. coli. Curr Top Microbiol Immunol 125:159–181

    PubMed  Google Scholar 

  • Maroko PR, Carpenter CB, Chiariello M, Fishbein MC, Radvany P, Knustman JD, Hale SL (1978) Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest 61:661–670

    PubMed  Google Scholar 

  • Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem 260:9069–9072

    PubMed  Google Scholar 

  • Martz E (1976) Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. II. Electrolyte permeability increase in the target cell membrane concomitant with programming for lysis. J Immunol 117:1023–1027

    PubMed  Google Scholar 

  • Mayer MM (1972) Mechanism of cytolysis by complement. Proc Natl Acad Sci USA 69:2954–2959

    PubMed  Google Scholar 

  • Mayer MM, Michaels DW, Ramm LE, Whitlow MB, Willoughby JB, Shin ML (1981) Membrane damage by complement. CRC Crit Rev Immunol 7:133–165

    Google Scholar 

  • McCartney C, Arbuthnott JP (1978) Mode of action of membrane-damaging toxins produced by staphylococci. In: Jeljaszewicz J, Wadström T (eds) Bacterial toxins and cell membranes. Academic Press, New York, pp 89–127

    Google Scholar 

  • McEwen BF, Arion WJ (1985) Permeabilization of rat hepatocytes with staphylococcus aureus α-toxin. J Cell Biol 100:1922–1929

    Article  PubMed  Google Scholar 

  • McLeod B, Baker P, Behrends CL, Baker PJ, Gewurz M (1975a) Studies of the inhibition of C5b-initiated lysis (reactive lysis). Immunology 28:379–390

    PubMed  Google Scholar 

  • McLeod B, Baker P, Behrends F, Gewurz H (1975b) Studies on the inhibition of C5b-initiated lysis (reactive lysis). III. Characterization of the inhibitory activity C567-INH and its mode of action. Immunology 28:133–149

    PubMed  Google Scholar 

  • McManus LM, Kolb WP, Crawford MH, O'Rourke RA, Grover FL, Pinckard RN (1983) Complement localization in ischemic baboon myocardium. Lab Invest 48:447

    Google Scholar 

  • Menestrina G (1986) Ionic channels formed by Staphylococcus aureus α-toxin: voltage-dependent inhibition by divalent and trivalent cations. J Mem Biol 90:177–190

    Article  Google Scholar 

  • Michaels DW (1979) Membrane damage by a toxin from the sea anemone stoichactis helianthus. I. Formation of transmembrane channels in lipid bilayers. Biochim Biophys Acta 555:67–78

    PubMed  Google Scholar 

  • Michaels DW, Abramovitz AS, Hammer CH, Mayer MM (1976) Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement. Proc Natl Acad Sci USA 73:2852–2856

    PubMed  Google Scholar 

  • Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 132:3197–3202

    PubMed  Google Scholar 

  • Mitsui K, Sekiya T, Nozawa Y, Hase J (1979a) Alteration of human erythrocyte plasma membranes by perfringolysin O as revealed by freeze-fracture electron microscopy. Studies on Colstridium per fringens exotoxins V. Biochim Biophys Acta 554:68–75

    PubMed  Google Scholar 

  • Mitsui K, Sekiya T, Okamura S, Nozawa Y, Hase J (1979b) Ring formation of perfringolysin O as revealed by negative stain electron microscopy. Biochim Biophys Acta 558:307–313

    PubMed  Google Scholar 

  • Möllby R (1978) Bacterial phospholipases. In: Jeljaszewicz J, Wadström T (eds) Bacterial toxins and cell membranes. Academic, London, pp 367–424

    Google Scholar 

  • Möllby R (1983) Isolation and properties of membrane-damaging toxins. In: Easmon CSF, Adlam C (eds) Staphlococci and staphylococcal infections, vol 2. Academic, London, pp 619–669

    Google Scholar 

  • Monahan JB, Sodetz JM (1980) Binding of the eighth component of human complement to the soluble cytolytic complex is mediated by its β subunit. J Biol Chem 255:10579–10582

    PubMed  Google Scholar 

  • Monahan JB, Sodetz JM (1981) Role of the β-subunit in the interaction of the eigth component of human complement with the membrane bound cytolytic complex. J Biol Chem 256:3433–3441

    PubMed  Google Scholar 

  • Montal M (1974) Formation of bimolecular membranes from lipid monolayers. Methods Enzymol 32:545–554

    PubMed  Google Scholar 

  • Morgan BP, Campbell AK (1985) The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231:205–208

    PubMed  Google Scholar 

  • Morgan BP, Luzio JP, Campbell AK (1984) Inhibition of complement-induced 14C sucrose release by intracellular and extracellular monoclonal antibodies to C9: evidence that C9 is a transmembrane protein. Biochem Biophys Res Comm 118:616–627

    Article  PubMed  Google Scholar 

  • Müller-Eberhard HJ (1975) Complement. Annu Rev Biochem 44:697–723

    Article  PubMed  Google Scholar 

  • Müller-Eberhard HJ (1984) The membrane attack complex. Springer Semin Immunopathol 7:93–141

    Article  PubMed  Google Scholar 

  • Myers VB, Haydon DA (1972) Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta 274:313–322

    PubMed  Google Scholar 

  • Nemerow GR, Gewurz H, Osofsky SG, Lint TF (1978) Inherited deficiency of the seventh component of complement associated with nephritis. J Clin Invest 61:1602–1610

    PubMed  Google Scholar 

  • Nicaud JM, Mackman N, Gray L, Holland IB (1985) Regulation of haemolysin synthesis in E. coli determined by Hly genes of human origin. Mol Gen Genet 199:111–116

    Article  PubMed  Google Scholar 

  • Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF (1983) Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein decay accelerating factor. Proc Natl Acad Sci USA 80:5066–5070

    PubMed  Google Scholar 

  • Niedermeyer W (1985) Interaction of streptolysin-O with biomembranes: Kinetic and morphological studies on erythrocyte membranes. Toxicon 23:425–439

    Article  PubMed  Google Scholar 

  • Norman AW, Spielvogel AM, Wong RC (1976) Polyene antibiotic-sterol interaction. Adv Lipid Res 14:127–170

    PubMed  Google Scholar 

  • Ofek I, Bergner-Rabinowitz S, Ginsburg I (1972) Oxygen-stable hemolysins of group A streptococci. VIII. Leukotoxic and antiphagocytic effects of streptolysins S and O. Infect Immun 6:459–464

    PubMed  Google Scholar 

  • Ohanian SH, Schlager SI (1981) Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. CRC Crit Rev Immunol 2:165–209

    Google Scholar 

  • Packman CH, Rosenfeld SI, Jenkins DE, Thiem PA, Leddy JP (1979) Complement lysis of human erythrocytes. Differing susceptibility of two types of paroxysmal nocturnal hemoglobinuria cells to C5b-9. J Clin Invest 69:428–433

    Google Scholar 

  • Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1983) Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 80:5430–5434

    PubMed  Google Scholar 

  • Parker CJ, Wiedmer TW, Sims PJ, Rosse WF (1985) Characterization of the complement sensitivity of paroxysmal nocturnal hemoglobinuria erythrocytes. J Clin Invest 75:2074–2084

    PubMed  Google Scholar 

  • Parra G, Platt JL, Falk RJ, Rodriguez-Iturbe B, Michael AF (1984) Cell populations and membrane attack complex in glomeruli of patients with post-streptococcal glomerulonephritis: identification using monoclonal antibodies by indirect immunoflurescence. Clin Immunol Immunopathol 33:324–332

    Article  PubMed  Google Scholar 

  • Parrisius J, Bhakdi S, Roth M, Tranum-Jensen J, Goebel W, Seeliger HRP (1986) Production and non-production of listeriolysin by beta-hemolytic strains of Listeria monocytogenes. Infect Immun 51:314–319

    PubMed  Google Scholar 

  • Perkinson DT, Baker PJ, Couser WG, Johnson RF, Adler S (1985) Membrane attack complex deposition in experimental glomerular injury. Am J Pathol 120:121–128

    PubMed  Google Scholar 

  • Petersen BH, Fraham JA, Brooks GF (1976) Human deficiency of the eight component of complement. J Clin Invest 57:283–288

    PubMed  Google Scholar 

  • Pinckard RN, O'Rourke RA, Crawford MH, Grover FS, McManus LM, Ghidoni JJ, Storrs SB, Olson MS (1980) Complement localization and mediation of ischemic injury in baboon myocardium. J Clin Invest 66:1050–1056

    PubMed  Google Scholar 

  • Podack ER (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 259:8641–8647

    PubMed  Google Scholar 

  • Podack ER, Dennert G (1983) Cell mediated cytolysis: assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302:442–445

    Article  PubMed  Google Scholar 

  • Podack ER, Konigsberg PJ (1984) Cytolytic T cell granules. Isolation, biochemical and functional characterization. J Exp Med 160:695–710

    Article  PubMed  Google Scholar 

  • Podack ER, Müller-Eberhard HJ (1978) Binding of deoxycholate, phosphatidyl choline vesicles, lipoprotein and of the S-protein to complexes of terminal complement components. J Immunol 121:1025–1030

    PubMed  Google Scholar 

  • Podack ER, Tschopp J (1982a) Circular polymerization of the ninth component of complement (poly C9): ring closure of the tubular complex confers resistance to detergent dissociation and to proteolytic degradation. J Biol Chem 257:15204–15212

    PubMed  Google Scholar 

  • Podack ER, Tschopp J (1982b) Polymerization of the ninth component of complement (C9): formation of poly C9 with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA 79:574–578

    PubMed  Google Scholar 

  • Podack ER, Tschopp J, Müller-Eberhard HJ (1982) Molecular organization of C9 within the membrane attack complex of complement. J Exp Med 156:268–282

    Article  PubMed  Google Scholar 

  • Podack ER, Young JD, Cohn ZA (1985) Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci USA 82:8629–8633

    PubMed  Google Scholar 

  • Podack ER, Dahlbäck B, Griffin JH (1986) Interaction of S-protein of complement with thrombin and antithrombin III during coagulation. J Biol Chem 261:7387–8392

    PubMed  Google Scholar 

  • Porter RR, Reid KBM (1978) The biochemistry of complement. Nature 275:699–704

    Article  PubMed  Google Scholar 

  • Preissner KT, Wassmuth R, Müller-Berghaus G (1985) Physicochemical characterization of human S-protein and its function in the coagulation system. Biochem J 231:349–355

    PubMed  Google Scholar 

  • Prigent D, Alouf JE (1976) Interaction of streptolysin O with sterols. Biochim Biophys Acta 443:288–300

    PubMed  Google Scholar 

  • Ramm LE, Mayer MM (1980) Life-span and size of the transmembrane channel formed by large doses of complement. J Immunol 124:2281–2287

    PubMed  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1982a) Transmembrane channel formation by complement: functional analysis of the number of C5b-6, C7, C8, and C9 molecules required for a single channel. Proc Natl Acad Sci USA 79:4751–4755

    PubMed  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1982b) Size of transmembrane channels produced by complement proteins C5b-8. J Immunol 129:1143–1146

    PubMed  Google Scholar 

  • Ramm LE, Whitlow MB, Koski CL, Shin ML, Mayer MM (1983) Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol 131:1411–1415

    PubMed  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1985) The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol 134:2594–2599

    PubMed  Google Scholar 

  • Roberts WN, Wilson JG, Wong W, Jenkins DE, Fearon DT, Austen KF, Nicholson-Weller An (1985) Normal number and function of CR 1 on affected erythrocytes of patients with paroxysmal noctural hemoglobinuria. J Immunol 134:512–517

    PubMed  Google Scholar 

  • Rogolsky M (1979) Non-enteric toxins of Staphylococcus aureus. Microbiol Rev 43:320–360

    PubMed  Google Scholar 

  • Rosenfeld SI, Kelly ME, Leddy JP (1976) Hereditary deficiency of the fifth component of complement in man. I. Clinical, immunochemical and family studies. J Clin Invest 57:1626–1634

    PubMed  Google Scholar 

  • Rosenfeld SI, Jenkins DE Jr, Leddy JP (1985) Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b. J Immunol 134:506–511

    PubMed  Google Scholar 

  • Rosse WF, Dacie JF (1966) Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. I. The sensitivity of PNH red cells to lysis by complement and specific antibody. J Clin Invest 45:736–744

    PubMed  Google Scholar 

  • Rosse WF, Adams JP, Thorpe AM (1974) The population of cells in paroxysmal nocturnal haemoglobinuria of intermediate sensitivity to complement lysis: significance and mechanism of increased immune lysis. Br J Haematol 28:181–190

    PubMed  Google Scholar 

  • Rottem S, Cole RM, Habig WH, Barile MF, Hardegree MC (1982) Structural characteristics of tetanolysin and its binding to lipid vesicles. J Bacteriol 152:888–892

    PubMed  Google Scholar 

  • Rus HG, Niculescu F, Constantinescu E, Cristea A, Vlaicu R (1986) Immunoelectron-microscopic localization of the terminal C5b-9 complement complex in human atherosclerotic fibrous plaque. Atherosclerosis 61:35–42

    Article  PubMed  Google Scholar 

  • Sabatini DD, Kreibich G, Morimoto T, Adesnik M (1982) Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol 92:1–22

    Article  PubMed  Google Scholar 

  • Sahashi K, Engel AG, Lambert EH, Howard FM (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 39:160–172

    PubMed  Google Scholar 

  • Salama A, Mueller-Eckhardt C, Boschek B, Bhakdi S (1987) Haemolytic efficiency of C5b-9 complexes in drug-induced immune haemolysis: role of cellular C5b-9 distribution. Br J Haematol (in press, January 1987)

    Google Scholar 

  • Salant DJ, Belok S, Madaio MP, Couser WG (1980) A new role for complement in experimental membranous nephorpathy in rats. J Clin Invest 66:1339–1350

    PubMed  Google Scholar 

  • Sanderson CJ (1976) The mechanism of T cell mediated cytotoxicity. I. The release of different cell components. Proc R Soc Lond [Biol] 192:221–229

    Google Scholar 

  • Sanderson CJ, Thomas JA (1977) The mechanism of K-cell (antibody-dependent) cell mediated cytotoxicity. I. The release of different cell components. Proc R Soc London [Biol] 197:407–418

    Google Scholar 

  • Sandvig K, Olsnes S (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. J Biol Chem 256:9068–9076

    PubMed  Google Scholar 

  • Sassi F, Hugo F, Muhly M, Kahled A, Ben Rachid MS, Bhakdi S (1987) A natural auto-inhibitory factor of the terminal complement pathway in serum of Ctenodactylus gondii. Mol Immunol in press

    Google Scholar 

  • Schäfer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137:1945–1949

    PubMed  Google Scholar 

  • Scharmann W (1976a) Purification and characterization of leucocidin from Pseudomonas aeruginosa. J Gen Microbiol 93:292–302

    PubMed  Google Scholar 

  • Scharmann W (1976b) Cytotoxic effects of leukocidin from Pseudomonas aeruginosa on polymorphonuclear leukocytes from cattle. Infect Immun 13:836–843

    PubMed  Google Scholar 

  • Scharmann W, Jacob F, Portstendorfer J (1976) The cytotoxic action of leucocidin from Pseudomonas aeruginosa on human polymorphonuclear leukocytes. J Gen Microbiol 93:303–308

    PubMed  Google Scholar 

  • Schein SJ, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–161

    Article  PubMed  Google Scholar 

  • Schönermark S, Rauterberg EW, Shin ML, Löke S, Roelcke D, Hänsch GM (1986) Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol 136:1772–1776

    PubMed  Google Scholar 

  • Sears DA, Weed R, Swisher SN (1964) Differences in the mechanism of in vitro immune hemolysis related to antibody specificity. J Clin Invest 43:975–985

    PubMed  Google Scholar 

  • Seeger W, Bauer M, Bhakdi S (1984) Staphylococcal α-toxin elicits hypertension in isolated rabbit lungs due to stimulation of the arachidonic acid cascade. J Clin Invest 74:849–858

    PubMed  Google Scholar 

  • Seeger W, Suttorp N, Hellwig A, Bhakdi S (1986) Non-cytolytic terminal complement complexes may serve as calcium gates to elicit leukotriene B4 generation in human polymorphonuclear leukocytes. J Immunol 137:1286–1291

    PubMed  Google Scholar 

  • Shany S, Grushoff PS, Bernheimer AW (1973) Physical separation of streptococcal nicotinamide adenine dinucleotide glycohydrolase from streptolysin O. Infect Immun 7:731–734

    PubMed  Google Scholar 

  • Shin HS, Pickering RJ, Mayer MM (1971) The fifth component of the guinea-pig complement system. III Dissociation and transfer of C5b, and the probable site of C5b fixation. J Immunol 106:480–493

    PubMed  Google Scholar 

  • Shin ML, Paznekas WA, Abramovitz AS, Mayer MM (1977) On the mechanism of membrane damage by complement: exposure of hydrophobic sites on activated complement proteins. J Immunol 119:1358–1364

    PubMed  Google Scholar 

  • Shin ML, Hänsch G, Hu VW, Nicholson-Weller A (1986) Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol 136:1777–1782

    PubMed  Google Scholar 

  • Silversmith RE, Nelsestuen GL (1986) Assembly of the membrane attack complex of complement on small unilamellar phospholipid vesicles. Biochemistry 25:852–860

    Article  PubMed  Google Scholar 

  • Simone CB, Henkart PA (1980) Permeability changes induced in erythrocyte ghost targets by antibody-dependent cytotoxic effector cells: evidence for membrane pores. J Immunol 124:954–963

    PubMed  Google Scholar 

  • Simone CB, Henkart P (1982) Inhibition of marker influx into complement-treated resealed erythrocyte ghosts by anti-C5. J Immunol 128:1168–1175

    PubMed  Google Scholar 

  • Sims PJ (1983) Complement pores in erythrocyte membranes. Analysis of C8/C9 binding required for functional membrane damage. Biochim Biophys Acta 732:541–552

    PubMed  Google Scholar 

  • Sims PJ, Lauf PK (1978) Steady state analysis of tracer exchange across the C5b-9 complement lesion in a biological membrane. Proc Natl Acad Sci USA 75:5669–5673

    PubMed  Google Scholar 

  • Sims PJ, Lauf PK (1980) Analysis of solute diffusion across the C5b-9 membrane lesion of complement: evidence that individual C5b-9 complexes do not function as discrete, uniform pores. J Immunol 125:2617–2625

    PubMed  Google Scholar 

  • Sims PJ, Wiedmer T (1984) Kinetics of polymerization of a flouresceinated derivative of complement protein C9 by the membrane-bound complex of complement proteins C5b-8. Biochemistry 23:3260–3267

    Article  PubMed  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model structure of cell membranes. Science 175:720–725

    PubMed  Google Scholar 

  • Skehel JJ, Baylex PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenze virus hemagglutinin at the pH-optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79:968–972

    PubMed  Google Scholar 

  • Smyth CJ, Duncan JL (1978) Thiol-activated (oxygen-labile) cytolysins. In: Jeljaszewicz J, Waldström T (eds) Bacterial toxins and cell membranes. Academic Press, New York, pp 129–183

    Google Scholar 

  • Smyth CJ, Freer JH, Arbuthnott JP (1975) Interaction of clostridium perfringens theta-haemolysin, a contaminant of commercial phospholipase C with erythrocyte ghost membranes and lipid despersions. A morphological study. Biochim Biophys Acta 382:479–493

    PubMed  Google Scholar 

  • Snyderman RD, Durack T, McCarty GA, Ward RE, Meadows L (1979) Deficiency of the fifth component of complement in human subjects. Am J Med 67:638–645

    Article  PubMed  Google Scholar 

  • Springer W, Goebel W (1980) Synthesis and secretion of hemolysin by Escherichia coli. J Bacteriol 144:53–59

    PubMed  Google Scholar 

  • Stanley KK, Kocher HP, Luzio JP, Jackson P, Tschopp J (1985) The sequence and topology of human complement component C9. EMBO J 4:375–382

    PubMed  Google Scholar 

  • Stanley KK, Page M, Campbell AK, Luzio JP (1986) A mechanism for the insertion of complement component C9 into target membranes. Mol Immunol 23:451–458

    Article  PubMed  Google Scholar 

  • Steck TL (1974) The organisation of proteins in the human red blood cell membrane. J Cell Biol 62:1–19

    Article  PubMed  Google Scholar 

  • Steckel EW, York RG, Monahan JB, Sodetz JM (1980) The eighth component of human complement. J Biol Chem 255:11997–12005

    PubMed  Google Scholar 

  • Steckel EW, Welbaum BE, Sodetz JM (1983) Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis. J Biol Chem 258:4318–4324

    PubMed  Google Scholar 

  • Stewart JL, Monahan JB, Brickner A, Sodetz JM (1984) Measurement of the ratio of the eighth and ninth components of human complement on complementlysed membranes. Biochemistry 23:4016–4022

    Article  PubMed  Google Scholar 

  • Stolfi RL (1968) Immune lytic transformation: a state of irreversible damage generated as a result of the reaction of the eighth component in the guinea pig complement system. J Immun 100:46–54

    PubMed  Google Scholar 

  • Suttorp N, Seeger W, Dewein E, Bhakdi S, Roka L (1985a) Staphylococcal α-toxin stimulates synthesis of prostacyclin by cultured endothelial cells from pig pulmonary arteries. Am J Physiol 248:C127–135

    PubMed  Google Scholar 

  • Suttorp N, Seeger W, Uhl J, Lutz F, Roka L (1985b) Pseudomonas aeruginosa cytotoxin stimulates prostacyclin production in cultured pulmonary artery endothelial cells: membrane attack and calcium influx. J Cell Phys 123:64–72

    Article  Google Scholar 

  • Tanford C, Reynold JA (1976) Characterization of membrane proteins in detergent solution. Biochim Biophys Acta 457:133–169

    PubMed  Google Scholar 

  • Tedesco F, Bardare M, Giovanetti AM, Sirchia G (1980) A familial dysfunction of the eighth component of complement (C8). Clin Immunol Immunopathol 16:180–191

    Article  PubMed  Google Scholar 

  • Tedesco F, Densen P, Villa MA, Peterson BH, Sirchia G (1983) Two types of dysfunctional eighth component of complement molecules in C8 deficiency in man: reconstitution of normal C8 from the mixture of two abnormal C8 molecules. J Clin Invest 71:183–191

    PubMed  Google Scholar 

  • Thelestam M, Möllby R (1975) Sensitive assay for detection of toxin-induced damage to the cytoplasmic membrane of human diploid fibroblasts. Infect Immun 12:225–232

    PubMed  Google Scholar 

  • Thelestam M, öllby R, Wadström T (1973) Effects of staphylococcal alpha-, beta-, delta-, gamma-hemolysins on human diploid fibroblasts and HeLa cells. Evaluation of a new quantitative assay for measuring cell damage. Infect Immun 8:938–946

    PubMed  Google Scholar 

  • Thelestam M, Jolivet-Reynaud C, Alouf JE (1983) Photolabeling of staphylococcal α-toxin from within rabbit erythrocyte membranes. Biochem Biophys Res Comm 111:444–449

    Article  PubMed  Google Scholar 

  • Thompson RA, Lachmann PJ (1970) Reactive lysis: the complement-mediated lysis of unsensitized cells. I. The characterization of the indicator factors and its identification as C7. J Exp Med 131:629–643

    Article  PubMed  Google Scholar 

  • Thompson RA, Rowe DS (1968) Reactive haemolysis — a distinctive form of red cell lysis. Immunology 14:745–750

    PubMed  Google Scholar 

  • Tobkes N, Wallace BA, Bayley H (1985) Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 24:1915–1920

    Article  PubMed  Google Scholar 

  • Todd EW (1938b) Lethal toxins of hemolytic streptococci and their antibodies. Br J Exp Pathol 19:367–378

    Google Scholar 

  • Tosteson DC, Andreoli TE, Tiefenberg M, Cook P (1968) The effects of macrocyclin compounds on cation transport in sheep red cells and thin and thick lipid membranes. J Gen Physiol 51:373s–384s

    PubMed  Google Scholar 

  • Tranum-Jensen J (1987a) Electron microscopical assays: negative staining. Methods Enzymol (in press)

    Google Scholar 

  • Tranum-Jensen J (1987b) Electron microscopical assays: freeze-fracture and-etching. Methods Enzymol (in press)

    Google Scholar 

  • Tranum-Jensen J, Bhakdi S (1983) Freeze-fracture ultrastructural analysis of the complement lesion. J Cell Biol 97:618–626

    Article  PubMed  Google Scholar 

  • Tranum-Jensen J, Bhakdi S, Bhakdi-Lehnen B, Bjerrum OJ, Speth V (1978) Complement lysis: the ultrastructure and orientation of the C5b-9 complex on target sheep erythrocyte membranes. Scand J Immun 7:45–56

    Google Scholar 

  • Tschopp J (1984) Circular polymerization of the membranolytic ninth component of complement: dependence on metal ions. J Biol Chem 259:10569–10573

    PubMed  Google Scholar 

  • Tschopp J, Esser AF, Spira TJ, Müller-Eberhard HJ (1981) Occurrence of an incomplemente C8 molecule in homozygous C8 deficiency in man. J Exp Med 154:1599–1607

    Article  PubMed  Google Scholar 

  • Tschopp J, Müller-Eberhard HJ, Podack ER (1982a) Formation of transmembrane tubules by spontaneous polymerization of the hydrophilic complement protein C9. Nature 298:534–538

    Article  PubMed  Google Scholar 

  • Tschopp J, Müller-Eberhard HJ, Podack ER (1982b) Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9-polymerizing complex C5b-8. Proc Natl Acad Sci USA 79:7474–7478

    PubMed  Google Scholar 

  • Tschopp J, Engel A, Podack ER (1984) Molecular weight of poly C9 of human complement. J Biol Chem 259:1922–1928

    PubMed  Google Scholar 

  • Tschopp J, Podack ER, Müller-Eberhard HJ (1985) The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol 134:495–499

    PubMed  Google Scholar 

  • Unwin N (1986) Is there a common design for cell membrane channels? Nature 323:12–13

    Article  PubMed  Google Scholar 

  • Urry DW (1972) Protein conformation in biomembranes: optical rotation and absorption of membrane suspensions. Biochim Biophys Acta 265:115–168

    PubMed  Google Scholar 

  • Valet G, Opferkuch W (1975) Mechanism of complement-induced cell lysis. Demonstration of a three-step mechanism of EAC1-8 lysis by C9 and of a non-osmotic swelling of erythrocytes. J Immunol 115:1028–1033

    PubMed  Google Scholar 

  • van den Bosch JF, Emody L, Ketyi I (1982a) Virulence of haemolytic strains of Escherichia coli in various animal models. FEMS Microbiol Lett 13:427–430

    Article  Google Scholar 

  • van den Bosch JF, Postma P, Koopman PAR, de Graaff J, MacLaren CM, van Brenk DG, Guinee PAM (1982b) Virulence of urinary and faecal Escherichia coli in relation to serotype, haemolysis and haemagglutination. J Hyg 88:567–577

    Google Scholar 

  • van Epps D, Andersen BR (1969) Streptolysin O: sedimentation coefficient and molecular weight determinations. J Bacteriol 100:526–527

    PubMed  Google Scholar 

  • van Epps D, Andersen BR (1973) Isolation of streptolysin O by preparative polyacrylamide gel electrophoresis. Infect Immun 7:493–495

    PubMed  Google Scholar 

  • van Epps D, Andersen BR (1974) Streptolysin O inhibition of neutrophil chemotaxis and mobility: non immune phenomenon with species specificity. Infect Immun 9:27–33

    PubMed  Google Scholar 

  • Vlaicu R, Niculescu F, Rus HG, Cirstea A (1985) Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis 57:163–177

    Article  PubMed  Google Scholar 

  • Vogt W, Schmidt G, von Buttlar B, Dieminger L (1978) A new function of the activated third component of complement: binding to C5, an essential step for C5 activation. Immunology 34:29–40

    PubMed  Google Scholar 

  • Waalwijk C, MacLaren DM, de Graaff J (1983) In vivo function of hemolysin in the nephropathogenicity of Escherichia coli. Infect Immun 42:245–249

    PubMed  Google Scholar 

  • Wagner W, Vogel M, Goebel W (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol 154:200–210

    PubMed  Google Scholar 

  • Ward RHR, Lachmann PJ (1985) Monoclonal antibodies which react with lymphocyte-lysed target cells and which crossreact with complement-lysed ghosts. Immunology 56:179–188

    PubMed  Google Scholar 

  • Ware CF, Kolb WP (1981) Assembly of the functional membrane attack complex of human complement: formation of disulfide-linked C9 dimers. Proc Natl Acad Sci USA 78:6426–6430

    PubMed  Google Scholar 

  • Ware CF, Wetsel RA, Kolb WP (1981) Physicochemical characterization of fluid phase (SC5b-9) and membrane derived (MC5b-9) attack complexes of human complement purified by immunoadsorbent affinity chromatography or selective detergent extraction. Mol Immunol 18:521–531

    Article  PubMed  Google Scholar 

  • Watson KC, Kerr EJC (1974) Sterol structural requirements for inhibition of streptolysin O activity. Biochem J 140:95–98

    PubMed  Google Scholar 

  • Weiner RN, Reinacher M (1982) Lower nephron toxicity of a highly purified cytotoxin from Pseudomonas aeruginosa in rats. Exp Mol Pathol 37:249–271

    Article  PubMed  Google Scholar 

  • Welch RA, Falkow S (1984) Characterization of Escherichia coli hemolysins conferring quantitative differences in virulence. Infect Immun 43:156–160

    PubMed  Google Scholar 

  • Welch RA, Dellinger EP, Minshew B, Falkow S, (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667

    Article  PubMed  Google Scholar 

  • Whitlow MB, Ramm LE, Mayer MM (1985) Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space, J Biol Chem 260:998–100

    PubMed  Google Scholar 

  • Wilkinson PC (1975) Inhibition of leukocyte locomotion and chemotaxis by lipid-specific bacterial toxins. Nature 255:485–487

    Article  PubMed  Google Scholar 

  • Yamamoto K, Kawshima T, Migita S (1982) Glutathione-catalyzed disulfide linking C9 in the membrane attack complex of complement. J Biol Chem 257, 8573–8576

    PubMed  Google Scholar 

  • Young JDE, Young TM, Lu LP, Unkeless JC, Cohn ZA (1982) Characterization of a membrane pore-forming protein from Entamoeba histolytica. J Exp Med 156:1677–1690

    Article  PubMed  Google Scholar 

  • Young JDE, Hengartner H, Podack ER, Cohn ZA, (1986a) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859

    Article  PubMed  Google Scholar 

  • Young JDE, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986b) Functional channel formation associated with cytotoxic T cell granules. Proc Natl Acad Sci USA 83:150–154

    PubMed  Google Scholar 

  • Young JDE, Podack ER, Cohn ZA (1986c) Properties of a purified pore-forming protein (perforin 1) isolated from H2-restricted cytotoxic T-cell granules. J Exp Med 164:144–155

    Article  PubMed  Google Scholar 

  • Young JDE, Leong LG, Liu C, Damiano A, Cohn ZA (1986d) Extracellular release of lymphocyte cytolytic pore-forming protein (perforin) after ionophore stimulation. Proc Natl Acad Sci USA 83:5668–5672

    PubMed  Google Scholar 

  • Zalman LS, Brothers MA, Chiu FJ, Müller-Eberhard HJ (1986) Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement. Proc Natl Acad Sci USA 83:5262–5266

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Bhakdi, S., Tranum-Jensen, J. (1987). Damage to mammalian cells by proteins that form transmembrane pores. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 107. Reviews of Physiology, Biochemistry and Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027646

Download citation

  • DOI: https://doi.org/10.1007/BFb0027646

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17609-1

  • Online ISBN: 978-3-540-47715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics