Skip to main content
Log in

Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Recent analyses of amino acid sequence data from selected proteins inCavia, Rattus, Homo, Bos, Sus, and a few additional rodents and other eutherians suggested that Rodentia is not a monophyletic taxon and thatCavia and other hystricognaths may have branched off earlier than the separation between Muroidea and Primates during mammalian evolution. Because this hypothesis of polyphyly is contrary to the otherwise unanimous recognition of rodent monophyly, we have reevaluated the morphological and developmental evidence from the cranium, dentition, postcranial skeleton, and fetal membranes for the taxa Hystricognathi, Muroidea, other Rodentia, Primates, Artiodactyla, and Lagomorpha, as well as for the eutherian morphotype. Our character analyses provide strong corroboration for the traditional hypothesis of rodent monophyly and lend additional support to the suggestion that Lagomorpha is the sister taxon of Rodentia. Our survey of published molecular data furnishes little or no support for the proposed hypothesis of rodent polyphyly. We conclude that this hypothesis is the result of poor sampling of sequence data from rodents and other eutherians, rather than any inherent difficulties in the use of molecular evidence for the assessment of mammalian evolution. The available molecular data suggest thatCavia differs considerably from other hystricognaths in many proteins, but the reasons for this remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Allard, M. W., Miyamoto, M. M., and Honeycutt, R. L. (1991). Tests for rodent polyphyly.Nature 353 610–611.

    Google Scholar 

  • Andrews, P. (1988). A phylogenetic analysis of the Primates. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 143–175.

    Google Scholar 

  • Beintema, J. J. (1985). Amino acid sequence data and evolutionary relationships among hystricognaths and other rodents. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 549–565.

    Google Scholar 

  • Beintema, J. J., and Campagne, R. N. (1987). Molecular evolution of rodent insulins.Mol. Biol. Evol. 4 10–18.

    Google Scholar 

  • Beintema, J. J., and Lenstra, J. A. (1982). Evolution of mammalian pancreatic ribonucleases. In Goodman, M. (ed.),Macromolecular Sequences in Systematic and Evolutionary Biology, Plenum Press, New York, pp. 43–73.

    Google Scholar 

  • Beintema, J. J., Fitch, W. M., and Carsana, A. (1986). Molecular evolution of pancreatic-type ribonucleases.Mol. Biol. Evol. 3 262–275.

    Google Scholar 

  • Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. (1991). Studies on the phylogenetic position of the Ctenodactylidae (Rodentia).Mol. Biol. Evol. 8 151–154.

    Google Scholar 

  • Brandt, J. F. (1855). Beiträge zur nähern Kenntniss der Säugethiere Russlands.Mém. Acad. Imp. Sci. Pétersbourg 6(9): 1–375.

    Google Scholar 

  • Carleton, M. D. (1984). Introduction to rodents. In Anderson, S., and Jones, J. K., Jr. (eds.),Orders and Families of Recent Mammals, John Wiley and Sons, New York, pp. 255–265.

    Google Scholar 

  • Cuvier, G. (1800–1805).Leçons d'Anatomie Comparée, 5 vol., Baudouin, Paris.

    Google Scholar 

  • Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 2, Plenum Press, New York, pp. 545–572.

    Google Scholar 

  • De Blainville, H. M. D. (1816). Prodrome d'une nouvelle distribution systématique du règne animal.Bull. Sci. Soc. Philom. Paris Sér. 3 3 105–124.

    Google Scholar 

  • De Jong, W. W. (1985). Superordinal affinities of Rodentia studied by sequence analysis of eye lens protein. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 211–226.

    Google Scholar 

  • Eisenberg, J. F. (1989).Mammals of the Neotropics. The Northern Neotropics, Vol. 1, University of Chicago Press, Chicago.

    Google Scholar 

  • Ellerman, J. R. (1940).The Families and Genera of Living Rodents, Vol. 1, British Museum (Natural History), London.

    Google Scholar 

  • Fitch, W. M., and Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: The effect of dense branching as exemplified by ribonuclease.Mol. Biol. Evol. 7 438–443.

    Google Scholar 

  • Friday, A. (1987). Models of evolutionary change and the estimation of evolutionary trees. In Harvey, P. H., and Partridge, L. (eds.),Oxford Surveys in Evolutionary Biology, Vol. 4, Oxford University Press, Oxford, pp. 61–88.

    Google Scholar 

  • Gidley, J. W. (1912). The lagomorphs an independent order.Science 36 285–286.

    Google Scholar 

  • Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E. (1982). Amino acid sequence evidence on the phylogeny of primates and other eutherians. In Goodman, M. (ed.),Macromolecular Sequences in Systematic and Evolutionary Biology, Plenum Press, New York, pp. 115–191.

    Google Scholar 

  • Goodman, M., Czelusniak, J., and Beeber, J. E. (1985). Phylogeny of primates and other eutherian orders: A cladistic analysis using amino acid and nucleotide sequence data.Cladistics 1 171–185.

    Google Scholar 

  • Grassé, P.-P., and Dekeyser, P. L. (1955). Ordre des Rongeurs. In Grassé, P.-P. (ed.),Traité de Zoologie. Anatomie, Systématique, Biologie, Vol. 17(II), Masson et Cie, Paris, pp. 1321–1525.

    Google Scholar 

  • Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351 649–652.

    Google Scholar 

  • Graur, D., Hide, W. A., Zharkikh, A., and Li, W.-H. (1992). The biochemical phylogeny of guinea pigs and gundis, and the paraphyly of the order Rodentia.Comp. Biochem. Physiol. B. Comp. Biochem. 101 495–498.

    Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals.Bull. Am. Mus. Nat. Hist. 27 1–524.

    Google Scholar 

  • Hartenberger, J.-L. (1977). A propos de l'origine des Rongeurs.Géobios, Mém. Spéc. 1 183–193.

    Google Scholar 

  • Hartenberger, J.-L. (1980). Données et hypothèses sur la radiation initiale des Rongeurs.Palaeovert. Mém. Jub. R. Lavocat, pp. 258–301.

  • Hartenberger, J.-L. (1985). The order Rodentia: Major questions on their evolutionary origin, relationships and suprafamilial systematics. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 1–33.

    Google Scholar 

  • Hasegawa, M., Cao, Y., Adachi, J., and Yano, T.-A. (1992). Rodent polyphyly?Nature 355 595.

    Google Scholar 

  • Hendriks, W., Leunissen, J., Nevo, E., Blemendal, H., and De Jong, W. W. (1987). The lens protein α A-crystallin of the blind mole rat,Spalax ehrenbergi: Evolutionary change and functional constraints.Proc. Natl. Acad. Sci. USA 84 5320–5324.

    Google Scholar 

  • Hennig, W. (1950).Grundzüge einer Theorie der phylogenetischen Systematik, Deutscher Zentralverlag, Berlin.

    Google Scholar 

  • Hennig, W. (1966).Phylogenetic Systematics, University of Illinois Press, Urbana.

    Google Scholar 

  • Jaeger, J.-J. (1988). Rodent phylogeny: New data and old problems. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 177–199.

    Google Scholar 

  • Kleinschmidt, T., Nevo, E., Goodman, M., and Braunitzer, G. (1985). Mole rat hemoglobin: Primary structure and evolutionary aspects in a second karyotype ofSpalax ehrenbergi, Rodentia (2n=52).Biol. Chem. Hoppe-Seyler 366 679–685.

    Google Scholar 

  • Koenigswald, W. von (1985). Evolutionary trends in the enamel of rodent incisors. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 403–422.

    Google Scholar 

  • Li, C.-K., and Ting, S.-Y. (1985). Possible phylogenetic relationship of Asiatic eurymylids and rodents, with comments on mimotonids. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 35–58.

    Google Scholar 

  • Li, C.-K., Wilson, R. W., Dawson, M. R., and Krishtalka, L. (1987). The origin of rodents and lagomorphs. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 1, Plenum Press, New York, pp. 97–108.

    Google Scholar 

  • Li, C.-K., Zheng, J.-J., and Ting, S.-Y. (1989). The skull ofCocomys lingchaensis, an early Eocene ctenodactyloid rodent of Asia.Nat. Hist. Mus. Los Angeles Co. Sci. Ser. 33 179–192.

    Google Scholar 

  • Li, W.-H., Hide, W. A., Zharkikh, A., Ma, D.-P., and Graur, D. (1992). The molecular taxonomy and evolution of the guinea pig.J. Hered. 83 174–181.

    Google Scholar 

  • Linnaeus, C. (1735).Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera et species, Fol. Lugduni, Batavorum.

    Google Scholar 

  • Linnaeus, C. (1758),Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis, Editio decima reformata, Vol. 1, Laurentii Salvii, Stockholm.

    Google Scholar 

  • Luckett, W. P. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.),Major Patterns in Vertebrate Evolution, Plenum Press, New York, pp. 439–516.

    Google Scholar 

  • Luckett, W. P. (1980). The suggested evolutionary relationships and classification of tree shrews. In Luckett, W. P. (ed.),Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York, pp. 3–31.

    Google Scholar 

  • Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from the dentition and placentation. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 227–276.

    Google Scholar 

  • Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.),Mammal Phylogeny, Springer-Verlag, New York, pp. 182–204.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985a).Evolutionary Relationships Among Rodents, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (1985b). Evolutionary relationships among rodents: Comments and conclusions. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 685–712.

    Google Scholar 

  • MacPhee, R. D. E. (1981). Auditory regions of primates and eutherian insectivores.Contrib. Primatol. 18 1–282.

    Google Scholar 

  • Martin, R. D. (1990).Primate Origins and Evolution, Chapman and Hall, London.

    Google Scholar 

  • McKenna, M. C. (1982). Lagomorph interrelationships.Geobios Mém. Spéc. 6 213–223.

    Google Scholar 

  • Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35 230–240.

    Google Scholar 

  • Moeller, H. (1974). Nagezähne bei Eutheria und Metatheria. Ein Beitrag zur Kenntnis von Konvergenzer-scheinungen bei Säugern.Säug. Mitt. 22 112–122.

    Google Scholar 

  • Mossman, H. W. (1937). Comparative morphogenesis of the fetal membranes and accessory uterine structures.Contrib. Embryol. Carneg. Inst. 26 129–246.

    Google Scholar 

  • Mossman, H. W. (1987).Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. In Luckett, W. P. (ed.),Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York, pp. 35–93.

    Google Scholar 

  • Novacek, M. J. (1985). Cranial evidence for rodent affinities. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 59–81.

    Google Scholar 

  • Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 2, Plenum Press, New York, pp. 507–543.

    Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 201–234.

    Google Scholar 

  • Ray, J. (1693).Synopsis methodica animalium quadrupedum et serpentini generis, S. Smith and B. Walford, London.

    Google Scholar 

  • Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. (1978). On the evolution of myoglobin.Phil. Trans. Roy. Soc. Lond. B 283 61–163.

    Google Scholar 

  • Sarich, V. M. (1985). Rodent macromolecular systematics. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 423–452.

    Google Scholar 

  • Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3 222–242.

    Google Scholar 

  • Shoshani, J., Goodman, M., Czelusniak, J., and Braunitzer, G. (1985). A phylogeny of Rodentia and other eutherian orders: Parsimony analysis utilizing amino acid sequences of alpha and beta hemoglobin chains. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 191–210.

    Google Scholar 

  • Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.),Major Patterns in Vertebrate Evolution, Plenum Press, New York, pp. 317–374.

    Google Scholar 

  • Szalay, F. S. (1985). Rodent and lagomorph morphotype adaptations, origins, and relationships: Some postcranial attributes analyzed. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 83–132.

    Google Scholar 

  • Szalay, F. S., Rosenberger, A. L., and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates.Yrb. Phys. Anthropol. 30 75–105.

    Google Scholar 

  • Tullberg, T. (1899). Ueber das System der Nagetiere: Eine phylogenetische Studie.Nova Acta Reg. Soc. Sci. Upsala Ser. 3 18 1–514.

    Google Scholar 

  • Weber, M. (1904).Die Säugetiere, Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Wood, A. E. (1957). What, if anything is a rabbit?Evolution 11 417–425.

    Google Scholar 

  • Wood, A. E. (1985). The relationships, origin and dispersal of the hystricognathous rodents. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 475–513.

    Google Scholar 

  • Woods, C. A. (1982). The history and classification of South American hystricognath rodents: Reflections on the far away and long ago. In Mares, M. A., and Genoways, H. H. (eds.),Mammalian Biology in South America, University of Pittsburgh Pymatuning Lab of Ecology, Linesville, pp. 377–392.

    Google Scholar 

  • Wriston, J. C., Jr. (1981). Biochemical peculiarities of the guinea pig and some possible examples of convergent evolution.J. Mol. Evol. 17 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckett, W.P., Hartenberger, J.L. Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations. J Mammal Evol 1, 127–147 (1993). https://doi.org/10.1007/BF01041591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041591

Key words

Navigation