Skip to main content
Log in

Degradation of juglone by soil bacteria

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bacteria that can degrade juglone (5-hydroxy-1,4-naphthoquinone) were isolated from soil beneath black walnut trees. Autecological studies with one of these bacteria (Pseudomonas J1), demonstrated that it could grow rapidly using juglone as its sole source of carbon and energy. Using nonlinear regression analysis and the Monod equation, it was determined that this bacterium had a high affinity for juglone (K s = 0.95 μg/ml).Pseudomonas J1 can also utilize other aromatic compounds from plants as its sole source of carbon and energy. Compounds such as chlorogenic acid, ferulic acid, gallic acid, and 2-hydroxy-1,4-naphthoquinone (Lawson) were rapidly degraded byPseudomonas J1. The rapid degradation of juglone and other suspected allelochemicals by soil bacteria make it unlikely that these compounds are important mediators of plant-plant interactions under natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. 1977. Introduction to Soil Microbiology. John Wiley & Sons, New York, pp. 214–221.

    Google Scholar 

  • Balba, M.T.M., Clarke, N.A., andEvans, W.C. 1979. The methanogenic fermentation of plant phenolics.Biochem. Soc. Trans. 7:1115–1116.

    Google Scholar 

  • Bard, Y. 1974. Nonlinear Parameter Estimation. Academic Press, New York.

    Google Scholar 

  • Davis, E.F. 1928. The toxic principle ofJuglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants.Am. J. Bot. 15:620 (abstract).

    Google Scholar 

  • Dawson, J.O., andSeymour, P.E. 1983. Effects of juglone concentration on growthin vitro ofFrankia Arl3 andRhizobium japonicum strain 71.J. Chem. Ecol. 9:1175–1183.

    Google Scholar 

  • Fisher, R.F. 1978. Juglone inhibits pine growth under certain moisture regimes.Soil Sci. Soc. Am. J. 42:801–803.

    Google Scholar 

  • Fisher, R.F. 1987. Allelopathy: A potential cause of forest regeneration failure, pp. 176–184,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Gomez-Alarcon, R.A., O'dowd, C., Leedle, J.A.Z., andBryant, M.P. 1982. 1,4-Naphthoquinone and other nutrient requirements ofSuccinivibrio dextrinosolvens.Appl. Environ. Microbiol. 44:346–350.

    Google Scholar 

  • Heimbrook, M.E.,Wang, W.L.L., andCampbell, G. 1986. Easily made flagella stains.Abst. Ann, Meeting Am. Soc. Microbiol. p. 240.

  • Holder-Franklin, M.A., andTate, R.L. 1986. Introduction of the computer into autecological studies, pp. 75–91,in R.L. Tate (ed.). Microbial Autecology, A Method for Environmental Studies. John Wiley & Sons, New York.

    Google Scholar 

  • Kaminsky, R. 1981. The microbial origin of the allelopathic potential ofAdenosloma fasciculatum H & A.Ecol. Monogr. 51:365–382.

    Google Scholar 

  • Lockwood, J.L., andFilonow, A.B. 1981. Responses of fungi to nutrient-limiting conditions and to inhibitory substances in natural habitats.Adv. Microbial Ecol. 5:1–61.

    Google Scholar 

  • Martin, J.P., andHaider, K. 1979. Biodegradation of14C-labeled model and cornstock lignins, phenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil.Appl. Environ. Microbiol. 38:283–289.

    Google Scholar 

  • Mathur, S.P. 1972. Spectroscopic and chemical evidence of quinones in soil humus.Soil. Sci. 113:136–139.

    Google Scholar 

  • Morbland, D.C., andMoreland, R.E. 1975. Soil survey of Boulder County area, Colorado. USDA Soil Conservation Service and Colorado Agricultural Experiment Station, p. 19.

  • Palleroni, N.J. 1984.Pseudomonas Migula 1894, pp. 141–199,in J.G. Holt and N.R. Krieg (eds.). Bergey's Manual of Determinative Bacteriology, 9th ed., Vol. 1. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Parke, D., andOrnston, L.N. 1984. Nutritional diversity of Rhizobiaceae revealed by auxanography.J. Gen. Microbiol. 130:1743–1750.

    Google Scholar 

  • Reber, H. 1975. Investigation of the sequential degradation of aromatic substances in pseudomonads, pp. 466–469,in G. Kilbertus, O. Reisinger, A. Mourey, and J.A. Cancela Da Fonseca (eds.). Biodégradation et Humification. Sarreguémines, Pierron, France.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Rietveld, W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.J. Chem. Ecol. 9:295–308.

    Google Scholar 

  • Rietveld, W.J., Schlesinger, R.C., andKessler, K.J. 1983. Allelopathic effects of black walnut on European black alder coplanted as a nurse species.J. Chem. Ecol. 9:1119–1133.

    Google Scholar 

  • Rosazzo, J.P. 1982. Microbial Transformation of Bioactive Compounds, Vol. II. CRC Press, Boca Raton, Florida, pp. 25–26.

    Google Scholar 

  • Saiz-Jimenez, C., Haider, K., andMartin, J.P. 1975. Anthroquinone and phenols as intermediates in the formation of dark-colored humic acid-like pigments byEurotium echinulatum.Soil Sci. Soc. Am. J. 39:649–653.

    Google Scholar 

  • Schmidt, S.K., Alexander, M., andShuler, M.L. 1985a. Predicting threshold concentrations of organic substrates for bacterial growth.J. Theor. Biol. 114:1–8.

    Google Scholar 

  • Schmidt, S.K., Simkins, S., andAlexander, M. 1985b. Models for the kinetics of biodegradation of organic compounds not supporting growth.Appl. Environ. Microbiol. 50:323–331.

    Google Scholar 

  • Schmidt, S.K., Scow, K.M., andAlexander, M. 1987. Kinetics ofp-nitrophenol mineralization by aPseudomonas sp.: Effects of second substrates.Appl. Environ. Microbiol. 53:2617–2623.

    Google Scholar 

  • Scow, K.M., Simkins, S., andAlexander, M. 1986. Kinetics of mineralization of organic compounds at low concentrations in soil.Appl. Environ. Microbiol. 51:1028–1035.

    Google Scholar 

  • Simkins, S., andAlexander, M. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density.Appl. Environ. Microbiol. 47:1299–1306.

    Google Scholar 

  • Smith, O.L. 1982. Soil Microbiology: A Model of Decomposition and Nutrient Cycling. CRC Press, Boca Raton, Florida, pp. 125–146.

    Google Scholar 

  • Steelink, C., andTollin, G. 1967. Free radicals in soil, pp. 147–169,in A.D. McLaren and G.H. Peterson, (eds.). Soil Biochemistry. Marcel Dekker, New York.

    Google Scholar 

  • Suflita, J.M., Horowitz, A., Shelton, D.R., andTiedje, J.M. 1982. Dehalogenation: A novel pathway for the anaerobic biodegradation of haloaromatic compounds.Science 218:1115–1117.

    Google Scholar 

  • Thomson, R.H. 1971. Naturally Occurring Quinones. Academic Press, London, pp. 203–205.

    Google Scholar 

  • Turner, J.A., andRice, E.L. 1975. Microbial decomposition of ferulic acid in soil.J. Chem. Ecol. 1:41–58.

    Google Scholar 

  • Williams, R.J., andEvans, W.C. 1975. The metabolism of benzoate byMoraxella species through anaerobic nitrate respiration.Biochem. J. 148:1–10.

    Google Scholar 

  • Young, L.Y. 1984. Anaerobic degradation of aromatic compounds, pp. 487–523,in D.T. Gibson (ed.). Microbial Degradation of Organic Compounds. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, S.K. Degradation of juglone by soil bacteria. J Chem Ecol 14, 1561–1571 (1988). https://doi.org/10.1007/BF01012522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012522

Key words

Navigation