Skip to main content
Log in

Quantitative and ultrastructural study of ascending projections to the medial mammillary nucleus in the rat

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

We analyzed the termination pattern of axons from the superior central nucleus and the ventral tegmental nucleus of Gudden within the medial mammillary nucleus (MM) in the rat. The neuropil of the MM consists of two classes of terminals, that is, terminals containing round synaptic vesicles and forming asymmetric synaptic contact, and terminals containing pleomorphic synaptic vesicles and forming symmetric synaptic contact. The number of axodendritic terminals with round vesicles is almost equal to that of terminals with pleomorphic vesicles. Almost all axosomatic terminals contain pleomorphic vesicles with symmetric synaptic contact. Injection of WGA-HRP into the central part of the superior central nucleus permitted ultrastructural recognition of many anterogradely labeled terminals within the median region of MM. The labeled terminals contacted mainly intermediate (1–2 μm diameter) and proximal dendrites (more than 2 μm diameter) as well as the neuronal somata. Serial ultrathin sections of neurons of the median region of the MM revealed that 37% of the axosomatic terminals were labeled anterogradely. The pars compacta of the superior central nucleus had reciprocal connections with the median region of MM. The axon terminals from this nucleus occupied 53% of axosomatic terminals, and contacted mainly intermediate dendrites. Following injection of WGA-HRP into the ventral tegmental nucleus, many labeled terminals were found in the medial and lateral regions of MM. They contacted mainly intermediate dendrites as well as neuronal somata. In the medial region, 78% of axosomatic terminals contacting retrogradely labeled neurons were labeled anterogradely. All labeled terminals from these nuclei contained pleomorphic vesicles, and made symmetric synaptic contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aas J-E, Brodal P (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the cat. J Comp Neurol 268:313–328

    PubMed  Google Scholar 

  • Allen GV, Hopkins DA (1988) Mammillary body in the rat: a cytoarchitectonic, Golgi, and ultrastructural study. J Comp Neurol 275: 39–64

    PubMed  Google Scholar 

  • Allen GV, Hopkins DA (1989) Mammillary body in the rat: Topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J Comp Neurol 286:311–336

    PubMed  Google Scholar 

  • Allen GV, Hopkins DA (1990) Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. J Comp Neurol 301:214–231

    PubMed  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    PubMed  Google Scholar 

  • Behzadi G, Kalén P, Parvopassu F, Wiklund L (1990) Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selectived-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37:77–100

    PubMed  Google Scholar 

  • Bleier R (1969) Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages. Brain Res 15:365–393

    PubMed  Google Scholar 

  • Bobillier P, Petitjean F, Salvert D, Ligier M, Seguin S (1975) Differential projections of the nucleus raphé dorsalis and nucleus raphé centralis as revealed by autoradiography. Brain Res 85:205–210

    PubMed  Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    PubMed  Google Scholar 

  • Bobillier P, Seguin S, Degueurch A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166:1–8

    PubMed  Google Scholar 

  • Briggs TL, Kaelber WW (1971) Efferent fiber connections of the dorsal and deep tegmental nuclei of Gudden. An experimental study in the cat. Brain Res 29:17–29

    PubMed  Google Scholar 

  • Cruce JAF (1975) An autoradiographic study of the projections of the mammillothalamic tract in the rat. Brain Res 85:211–219

    PubMed  Google Scholar 

  • Cruce JAF (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644

    PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJH, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284:12–35

    PubMed  Google Scholar 

  • Emson PC, Goedert M, Mantyh PW (1985) Neurotensin-containing neurons. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, vol 4. GABA and Neuropeptides in the CNS, Part I, Elsevier, Amsterdam, pp 355–405

    Google Scholar 

  • Finley JCW, Maderdrut JL, Petrusz P (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198:541–555

    PubMed  Google Scholar 

  • Groenewegen HJ, Ahlenius S, Haber SN, Kowali NW, Nauta WJH (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J Comp Neurol 249:65–102

    PubMed  Google Scholar 

  • Harlan RE, Shivers BD, Romano GJ, Howells RD, Pfaff D (1987) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J Comp Neurol 258:159–184

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1983) Comparative cytoarchitectonic study of Gudden's tegmental nuclei in some mammals. J Comp Neurol 216:233–244

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1984) Comparative anatomical study of the tegmentomammillary projections in some mammals: a horseradish peroxidase study. Brain Res 300:335–349

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1985) Afferent connections of Gudden's tegmental nuclei in the rabbit. J Comp Neurol 235:169–181

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1986) Subcortical afferents to the nucleus reticularis tegmenti pontis in the rabbit: a retrograde horseradish peroxidase study. Okajimas Folia Anat Jpn 63:159–178

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1989) Retrograde double-labeling study of the mammillothalamic and the mammillotegmental projections in the rat. J Comp Neurol 284:1–11

    PubMed  Google Scholar 

  • Hayakawa T, Zyo K (1990) Ultrastructure of the mammillotegmental projections to the ventral tegmental nucleus of Gudden of the rat. J Comp Neurol 293:466–475

    PubMed  Google Scholar 

  • Hayakawa T, Seki M, Zyo K (1981) Studies on the efferent projections of the interpeduncular complex in cats. Okajimas Folia Anat Jpn 58:1–16

    PubMed  Google Scholar 

  • Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187:19–48

    PubMed  Google Scholar 

  • Irle E, Sarter M, Guldin WO, Markowitsch HJ (1984) Afferents to the ventral tegmental nucleus of Gudden in the mouse, rat, and cat. J Comp Neurol 228:509–541

    PubMed  Google Scholar 

  • Kahn D, Hou-Yu A, Zimmerman EA (1982) Localization of neurotensin in the hypothalamus. Ann New York Acad Sci 400:117–131

    Google Scholar 

  • Kaneko T, Itoh K, Shigemoto R, Mizuno N (1989) Glutaminase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat. Neuroscience 32:79–98

    PubMed  Google Scholar 

  • Kellar KJ, Brown PA, Madrid J, Bernstein M, Vernikos-Danellis J, Mehler WR (1977) Origins of serotonin innervation of forebrain structures. Exp Neurol 56:52–62

    PubMed  Google Scholar 

  • Khachaturian H, Lewis ME, Watson SJ (1983) Enkephalin system in diencephalon and brainstem of the rat. J Comp Neurol 220:310–320

    PubMed  Google Scholar 

  • Kiyama H, Shiosaka S, Sakamoto N, Michel J-P, Pearson J, Tohyama M (1986) A neurotensin-immunoreactive pathway from the subiculum to the mammillary body in the rat. Brain Res 375:357–359

    PubMed  Google Scholar 

  • Köhler C, Steinbusch H (1982) Identification of serotonin and nonserotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975

    PubMed  Google Scholar 

  • Köhler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: A combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209:91–111

    PubMed  Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    PubMed  Google Scholar 

  • Maciewicz R, Taber-Pierce E, Ronner S, Foote WE (1981) Afferents to the central superior raphe nucleus in the cat. Brain Res 216:414–421

    PubMed  Google Scholar 

  • Meibach RC, Siegel A (1977a) Efferent connections of the septal area in the rat: An analysis utilizing retrograde and anterograde transport methods. Brain Res 119:1–20

    PubMed  Google Scholar 

  • Meibach RC, Siegel A (1977b) Efferent connections of the bippocampal formation in the rat. Brain Res 124:197–224

    PubMed  Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  Google Scholar 

  • Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164:171–184

    PubMed  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: Ascending projections. J Comp Neurol 180:417–438

    PubMed  Google Scholar 

  • Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, vol 4. GABA and Neuropeptides in the CNS, Part I, Elsevier, Amsterdam, pp 406–608

    Google Scholar 

  • Murakami S, Okamura H, Yanaihara C, Yanaihara N, Ibata Y (1987) Immunocytochemical distribution of Met-enkephalin-Arg6-Gly7-Le8 in the rat lower brainstem. J Comp Neurol 261:193–208

    PubMed  Google Scholar 

  • Niimi K, Koizuka M, Kawamura S, Abe K (1972) Efferent projections of the mammillary body in the cat. Okajimas Folia Anat Jpn 49:129–156

    PubMed  Google Scholar 

  • Olucha F, Martinez-Garcia F, López-Garcia C (1985) A new stabilizing agent for tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). J Neurosci Methods 13:131–138

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd ed. Academic Press, New York

    Google Scholar 

  • Petrovický P (1971) Structure and incidence of Gudden's tegmental nuclei in some mammals. Acta Anat 80:273–286

    PubMed  Google Scholar 

  • Petrovický P (1973) Note on the connections of Gudden's tegmental nuclei. 1 Efferent ascending connections in the mamillary peduncle. Acta Anat 86:165–190

    PubMed  Google Scholar 

  • Petrusz P, Merchenthaler L, Maderdrut JL (1985) Distribution of enkephalin-containing neurons in the central nervous system. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, vol 4. GABA and Neuropeptides in the CNS, Part I. Elsevier, Amsterdam, pp 273–334

    Google Scholar 

  • Seki M, Zyo K (1984) Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J Comp Neurol 229:242–256

    PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study withPhaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    PubMed  Google Scholar 

  • Shibata H (1987) Ascending projections to the mammillary nuclei in the rat: a study using retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 264:205–215

    PubMed  Google Scholar 

  • Shibata H (1989) Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436–452

    PubMed  Google Scholar 

  • Standaert DG, Needleman P, Saper CB (1986) Organization of atriopeptin-like immunoreactive neurons in the central nervous system of the rat. J Comp Neurol 253:315–341

    PubMed  Google Scholar 

  • Sutin E, Jacobowitz DM (1988) Immunocytochemical localization of peptides and other neurochemicals in the rat laterodorsal tegmental nucleus and adjacent area. J Comp Neurol 270:243–270

    PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–646

    PubMed  Google Scholar 

  • Takeuchi Y, Allen GV, Hopkins DA (1985) Transnuclear transport and axon collateral projections of the mamillary nuclei in the rat. Brain Res Bull 14:453–468

    PubMed  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    PubMed  Google Scholar 

  • Uchizono K (1967) Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp Brain Res 4:97–113

    PubMed  Google Scholar 

  • Van de Kar LD, Lorens SA (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei. Brain Res 162:45–54

    PubMed  Google Scholar 

  • Van der Kooy D, Kuypers HGJM, Catsman-Berrevoets CE (1978) Single mammillary body cells with divergent axon collaterals. Demonstration by a simple, fluorescent retrograde double labeling technique in the rat. Brain Res 158:189–196

    Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II Efferent connections. J Comp Neurol 297:135–156

    Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    PubMed  Google Scholar 

  • Watanabe K, Kawana E (1980) A horseradish peroxidase study on the mammillothalamic tract in the rat. Acta Anat 108:394–401

    PubMed  Google Scholar 

  • Williams RG, Dockray GJ (1983) Distribution of enkephalin-related peptides in rat brains: immunocytochemical studies using antisera to Met-enkephalin and Met-enkephalin Arg6Phe7. Neuroscience 9:563–586

    PubMed  Google Scholar 

  • Wouterlood FG, Steinbusch HWM, Luiten PGM, Bel JGJM (1987) Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing withPhaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase. Brain Res 406:330–336

    PubMed  Google Scholar 

  • Yamano M, Tohyama M (1987) Afferent and efferent enkephalinergic system of the tegmental nuclei of Gudden in the rat: an immunocytochemical study. Brain Res 408:22–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayakawa, T., Zyo, K. Quantitative and ultrastructural study of ascending projections to the medial mammillary nucleus in the rat. Anat Embryol 184, 611–622 (1991). https://doi.org/10.1007/BF00942583

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942583

Key words

Navigation