Skip to main content
Log in

The human pineal gland in aging and Alzheimer's disease: patterns of cytoskeletal antigen immunoreactivity

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Patients with Alzheimer's disease (AD) and some aged controls may have diminished functions of the pineal gland. In this immunocytochemical study, we stained pineal glands from cases of AD and young and aged controls for cytoskeletal elements and amyloid. We found no evidence of neurofibrillary tangles (NFT) or the accumulation of neurofilaments, tau, A68, or β/A4 amyloid deposition in pinealocytes or associated structures in cases of AD or controls. In both AD and controls, we observed dense immunoreactivity for phosphorylated neurofilaments in marginal plexuses associated with processes of pinealocytes, boutons, and knob-like endings. The accumulation of phosphorylated neurofilaments in the processes of pinealocytes appears to be a normal morphological characteristic of the pineal gland and may not represent a pathological change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arieti S (1954) The pineal gland in old age. J Neuropathol Exp Neurol 13:482–491

    Google Scholar 

  2. Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A qualitative study. Acta Neuropathol (Berl) 37:111–118

    Google Scholar 

  3. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Google Scholar 

  4. Cardinali DP, Vacas MI, Gejman PV, Pisarev MA, Barontini M, Boado RJ, Juvenal GJ (1983) The sympathetic superior ganglia as “little neuroendocrine brains”. Acta Physiol Lat Am 33:205–221

    Google Scholar 

  5. Cork LC, Sternberger NH, Sternberger LA, Casanova MF, Struble RG, Price DL (1986) Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer's disease. J Neuropathol Exp Neurol 45:56–64

    Google Scholar 

  6. delRio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 483–534

    Google Scholar 

  7. Duffy PE, Graf L, Rapport MM (1977) Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors. J Neuropathol Exp Neurol 36:645–652

    Google Scholar 

  8. Erlich SS, Apuzzo MLJ (1985) The pineal gland: anatomy, physiology, and clinical significance. J Neurosurg 63:321–341

    Google Scholar 

  9. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Google Scholar 

  10. Hasegawa A, Ohtsubo K, Mori W (1987) Pineal gland in old age; quantitative and qualitative morphological study of 168 human autopsy cases. Brain Res 409:343–349

    Google Scholar 

  11. Hirano A, Zimmerman HM (1962) Alzheimer's neurofibrillary changes. A topographic study. Arch Neurol 7:227–242

    Google Scholar 

  12. Hyman BT, Van Hoesen GW, Wolozin BL, Davies P, Kromer LJ, Damasio AR (1988) Alz-50 antibody recognizes Alzheimerrelated neuronal changes. Ann Neurol 23:371–379

    Google Scholar 

  13. Iguchi H, Kato K-I, Ibayashi H (1982) Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab 55:27–29

    Google Scholar 

  14. Ihara Y, Abraham C, Selkoe DJ (1983) Antibodies to paired helical filaments in Alzheimer's disease do not recognize normal brain proteins. Nature 304:727–730

    Google Scholar 

  15. Jengeleski CA, Powers RE, O'Connor DT, Price DL (1989) Noradrenergic innervation of human pineal gland: abnormalities in aging and Alzheimer's disease. Brain Res 481:378–382

    Google Scholar 

  16. Kawasaki H, Murayama S, Tomonaga M, Izumiyama N, Shimada H (1987) Neurofibrillary tangles in human upper cervical ganglia. Morphological study with immunohistochemistry and electron microscopy. Acta Neuropathol (Berl) 75:156–159

    Google Scholar 

  17. Kemper TL (1983) Organization of the neuropathology of the amygdala in Alzheimer's disease. Biological aspects of Alzheimer's disease. Banbury Rep 15:31–35

    Google Scholar 

  18. Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42:1097–1105

    Google Scholar 

  19. Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Methods in laboratory investigation. Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236

    Google Scholar 

  20. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein τ (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048

    Google Scholar 

  21. Loewenstein RJ, Weingartner H, Gillin JC, Kaye W, Eberts M, Mendelson WB (1982) Disturbances of sleep and cognitive functioning in patients with dementia. Neurobiol Aging 3:371–377

    Google Scholar 

  22. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Google Scholar 

  23. Nair NPV, Hariharasubramanian N, Pilapil C, Isaac I, Thavundayil JX (1986) Plasma melatonin — as index of brain aging in humans? Biol Psychiatry 21:141–150

    Google Scholar 

  24. Papasozomenos SCh (1989) Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab Invest 60:123–137

    Google Scholar 

  25. Preslock JP (1984) The pineal gland: basic implications and clinical correlations. Endocr Rev 5:282–308

    Google Scholar 

  26. Price DL, Koo EH, Unterbeck A (1989) Cellular and molecular biology of Alzheimer's disease. BioEssays 10:69–74

    Google Scholar 

  27. Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Peskind E, Gerber C (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer's type. Neurobiol Aging 3:361–370

    Google Scholar 

  28. Reiter RJ (1981) The mammalian pineal gland: structure and function. Am J Anat 162:287–313

    Google Scholar 

  29. Reiter RJ (1988) Neuroendocrinology of melatonin. In: Miles A, Philbrick DRS, Thompson C (eds) Melatonin. Clinical perspectives. Oxford University, Oxford, pp 1–42

    Google Scholar 

  30. Scharenberg K, Liss L (1965) The histologic structure of the human pineal body. Prog Brain Res 10:193–217

    Google Scholar 

  31. Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  32. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Google Scholar 

  33. Sternberger NH, Sternberger LA, Ulrich J (1985) Aberrant neurofilament phosphorylation in Alzheimer disease. Proc Natl Acad Sci USA 82:4274–4276

    Google Scholar 

  34. Stopa EG, Tate-Ostroff B, Walcott EC, Majocha RE, Marotta CA (1989) Human suprachiasmatic nuclei in Alzheimer's disease. J Neuropathol Exp Neurol 48:327 (abstr)

    Google Scholar 

  35. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44

    Google Scholar 

  36. Tapp E (1983) The histological appearances of the pineal gland from puberty to old age. In: Gupta D, Reiter RJ (eds) The pineal gland during development: from fetus to adult. Croom Helm, London, pp 89–99

    Google Scholar 

  37. Tapp E, Huxley M (1972) The histological appearance of the human pineal gland from puberty to old age. J Pathol 108:137–144

    Google Scholar 

  38. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    Google Scholar 

  39. Touitou Y, Fèvre M, Bogdan A, Reinberg A, De Prins J, Beck H, Touitou C (1984) Patterns of plasma melatonin with ageing and mental condition: stability of nyctohemeral rhythms and differences in seasonal variations. Acta Endocrinol 106:145–151

    Google Scholar 

  40. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510

    Google Scholar 

  41. Wolozin BL, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brain of Alzheimer patients. Science 232:648–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the U.S. Public Health Service (NIH AG 03359, AG 05146, NS 07179, and NS 25369). Dr. Pardo is a recipient of a Fellowship of John E. Fogarty International Center (1 F05TW04305-01). Dr. Price is the recipient of a Javits Neuroscience Investigator Award (NIH NS 10580) and a Leadership and Excellence in Alzheimer's Disease (LEAD) award (NIA AG 07914)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, C.A., Martin, L.J., Troncoso, J.C. et al. The human pineal gland in aging and Alzheimer's disease: patterns of cytoskeletal antigen immunoreactivity. Acta Neuropathol 80, 535–540 (1990). https://doi.org/10.1007/BF00294615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294615

Key words

Navigation