Skip to main content
Log in

The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This review of the literature concerns the gut microbiota of aquatic invertebrates and highlights the questions and processes that merit attention if an understanding of the role of gut microbes in the physiology of host invertebrates and nutrient dynamics of aquatic systems is to be gained. A substantial number of studies report the presence of gut microbes in aquatic invertebrates. Crustacea, Mollusca, and Echinodermata have received the most attention, with few studies involving other invertebrate groups. Different types of associations (e.g., ingestion, contribution of exoenzymes, incubation, parasitism) are reported to occur between gut microbes and aquatic invertebrates, and it is clear that gut bacterial communities cannot be treated as single functional entities, but that individual populations require examination. In addition, gut microbes may be either ingested transients or residents, the presence of which have different implications for the invertebrate. The most commonly reported genera of gut bacteria are Vibrio, Pseudomonas, Flavobacterium, Micrococcus, and Aeromonas. Quite a number of authors report the physiological properties of gut microbes (including enzyme activities and attributes such as nitrogen fixation), while less attention has been given to consideration of the colonization sites within the digestive tract, the density and turnover of gut bacteria, and the factors affecting the presence and nature of gut microflora. In addition, although a few studies have demonstrated a positive relationship between invertebrates and their gut microbiota, particularly with regard to nutrient gain by the invertebrate, very little conclusive evidence exists as to the role of bacteria in the physiology of host invertebrates. This has resulted from a lack of process-oriented studies. The findings for aquatic gut microbes are compared to those of gut bacteria associated with terrestrial invertebrates, where gut microbes contribute significantly to nutrient gain by the host in some environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams A (1991) Detection of Vibrio parahaemolyticus biotype alginolyticus in penaeid shrimps using an amplified enzyme-linked immunosorbent assay. Aquaculture 93:101–108

    Google Scholar 

  2. Adams SM, Angelovic JW (1970) Assimilation of detritus and its associated bacteria by three species of estuarine animals. Chesapeake Sci 11(4):249–254

    Google Scholar 

  3. Akin DE, Benner JB (1988) Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl Environ Microbiol 54(5):1117–1125

    Google Scholar 

  4. Alongi DM (1985) Microbes, meiofauna, and bacterial productivity on tubes constructed by the polychaete Capitella capitata. Mar Ecol Prog Ser 23:207–208

    Google Scholar 

  5. Alvarez RJ (1983) Frequency and distribution of bacterial flora of penaeid shrimp. Caribbean J Sci 19:43–48

    Google Scholar 

  6. Amade P, Charroin C, Baby C, Vacelet J (1987) Antimicrobial activities of marine sponges from the Mediterranean Sea. Mar Biol 94:271–275

    Google Scholar 

  7. Araki GS, Giese AC (1970) Carbohydrases in sea stars. Physiol Zool 43:296–305

    Google Scholar 

  8. Atlas RM, Busdosh M, Krichevsky EJ, Kaneko T (1982) Bacterial populations associated with the Arctic amphipod Boeckosimus affinis. Can J Microbiol 28(1):92–99

    Google Scholar 

  9. Austin B, Allen DA (1982) Microbiology of laboratory-hatched brine shrimp (Artemia). Aquaculture 26:369–383

    Google Scholar 

  10. Austin DA, Baker JA (1988) Fate of bacteria ingested by larvae of the freshwater mayfly Ephemera danica. Microb Ecol 15:323–332

    Google Scholar 

  11. Austin B, Bishop I, Gray G, Watt B, Dawes J (1986) Monoclonal antibody-based enzyme-linked immunosorbent assays for rapid diagnosis of clinical cases of enteric red mouth and furunculosis in fish farms. J Fish Dis 9:469–474

    Google Scholar 

  12. Baker JH, Bradnam LA (1976) The role of bacteria in the nutrition of aquatic detritivores. Oecologia (Berl) 24:95–104

    Google Scholar 

  13. Barber BJ, Ford SE, Littlewood DTJ (1991) A physiological comparison of resistant and susceptable oysters Crassostrea virginica (Gmelin) exposed to the endoparasite Haplosporidium nelsoni (Haskin, Strauber, and Mackin). J Exp Mar Biol Ecol 146(1):101–112

    Google Scholar 

  14. Barlocher F (1981) Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mcyol Soc 76:160–165

    Google Scholar 

  15. Barlocher F, Newell SY, Arsuffi TL (1989) Digestion of Spartina alterniflora Loisel material with and without fungal constituents by the periwinkle Littorina irrorata Say (Mollusca: Gastropoda). J Exp Mar Biol Ecol 130:45–53

    Google Scholar 

  16. Barlocher R (1982) The contribution of fungal enzymes to the digestion of leaves by Gammarus fossarum Koch. Oecologia 52:1–4

    Google Scholar 

  17. Baumann P, Baumann L (1977) Biology of the marine Enterobacteria; Genera Beneckea and Photobacterium. Ann Rev Microbiol 31:39–61

    Google Scholar 

  18. Bayon C, Mathelin J (1980) Carbohydrate fermentation and by-product absorption studied with labelled cellulose in Oryctes nasicornis larvae (Coleoptera:Scarabaeidae). J Insect Physiol 26:833–840

    Google Scholar 

  19. Beattie et al (1991) Investigation of the relationship between the presence of a gram-positive bacterial infection and summer mortality of the pacific oyster Crassostrea gigas. Aquaculture 94(1):1–16

    Google Scholar 

  20. Beeson RJ, Johnson PT (1967) Natural bacterial flora of the bean clam, Donax gouldi. J Invert Pathol 9:104–110

    Google Scholar 

  21. Benemann JR (1973) Nitrogen fixation in termites. Science 64:164–165

    Google Scholar 

  22. Berkeley C (1959) Some observations of Cristospira in the crystalline style Saxidomus giganteus Deshayes and in that of some other Lamellibranchiata. Can J Zool 37:53–58

    Google Scholar 

  23. Bernard FR (1970) Occurrence of the spirochaete genus Cristispira in Western Canadian marine bivalves. Veliger 13(1):33–36

    Google Scholar 

  24. Bignell DE (1984) The arthropod gut as an environment for microorganisms. In: Anderson JM, Raynon ADM, Walton DWA (eds) Invertebrate-Microbial Interactions. Cambridge University Press, Cambridge, pp 205–227

    Google Scholar 

  25. Boyle PJ, Mitchell R (1978) Absence of microorganisms in crustacean digestive tracts. Science 200:1157–1159

    Google Scholar 

  26. Branch GM, Pringle A (1987) The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J Exp Mar Biol Ecol 107:219–235

    Google Scholar 

  27. Breznak JA (1975) Symbiotic relationships between termites and their intestinal microbiota. In: Jennings DH, Lee DL (eds) Symbiosis. (Symposia of the Society for Experimental Biology, XXXIX) Cambridge University Press, Cambridge, pp 559–580

    Google Scholar 

  28. Breznak JA (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Anderson JM, Raynon ADM, Walton DWA (eds) Invertebrate-Microbial Interactions. Cambridge University Press, Cambridge, pp 173–203

    Google Scholar 

  29. Breznak JA, Pankratz HS (1977) In situ morphology of the gut microbiota of wood-eating termites (Reticulitermes flavipes (Kollar) and Coptotermes formosanus (Shiraki)). Appl Environ Microbiol 33(2):406–426

    Google Scholar 

  30. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580

    Google Scholar 

  31. Buchanan JS (1978) Cytological studies on a new species of rickettsis found in association with a phage in the digestive gland of the marine bivalve mollusc, Tellina tenuis (da Costa). J Fish Dis 1:27–43

    Google Scholar 

  32. Cameron DE, Garland CD, Lewis TE, Machin PJ (1988) A survey of Vibrionaceae in Tasmanian coastal waters, with special reference to bacterial species pathogenic to fish or shellfish. Aust J Mar Freshwater Res 39:145–152

    Google Scholar 

  33. Cammen LM (1980) The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar Biol 61:9–20

    Google Scholar 

  34. Cammen LM (1989) The relationship between ingestion rate of deposit feeders and sediment nutritional value. In: Lopez G, Taghon G, Levinton J (eds) Ecology of marine deposit feeders. Springer-Verlag, New York, pp 201–222

    Google Scholar 

  35. Campbell LL Jr, Williams OB (1951) The bacteriology of Gulf coast shrimp. Food Technol 1951:125–126

    Google Scholar 

  36. Cann DC, Hobbs G, Wison BB, Horsley RW (1971) The bacteriology of “scampi” (Nephrops norvigicus) II. Detailed investigation of the bacterial flora of freshly caught samples. J Food Technol 6:153–161

    Google Scholar 

  37. Carman KR (1990) Radioactive labeling of a natural assemblage of marine sedimentary bacteria and microalgae for trophic studies: an autoradiographic study. Microb Ecol 19:279–290

    Google Scholar 

  38. Carman KR, Thistle D (1985) Microbial food partitioning by three species of benthic copepods. Mar Biol 88:143–148

    Google Scholar 

  39. Carman KR, Dobbs FC, Guckert JB (1989) Comparison of three techniques for administering radiolabeled substrates to sediments for trophic studies: uptake of label by harpacticoid copepods. Mar Biol 102:119–125

    Google Scholar 

  40. Carpenter JL, Culliney JL (1975) Nitrogen fixation in marine shipworms. Science 187:551–552

    Google Scholar 

  41. Castille FL, Lawrence AL (1979) The role of bacteria in the uptake of hexoses from seawater by postlarval penaeid shrimp. Comp Biochem Physiol 64A:41–48

    Google Scholar 

  42. Chamier A, Willougby LG (1986) The role of fungi in the diet of the amphipod Gammarus pulex (L.): an enzymatic study. Freshwater Biol 16(2):197–208

    Google Scholar 

  43. Chamier AC (1991) Cellulose digestion and metabolism in the freshwater amphipod Gammarus pseudolimnaeus Bousfield. Freshwater Biol 25(1):33–40

    Google Scholar 

  44. Colorni A (1985) A stuy on the bacterial flora of gian prawn Macrobrachium rosenbergii, larvae fed with Artemia salina nauplii. Aquaculture 49:1–10

    Google Scholar 

  45. Colwell RR, Liston J (1960) Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl Microbiol 8:104–109

    Google Scholar 

  46. Colwell RR, Liston J (1962) The natural bacterial flora of certain marine invertebrates. J Insect Pathol 4:23–33

    Google Scholar 

  47. Colwell RR, West PA, Maneval D, Remmers EF, Eliot EL, Carlson NE (1984) Ecology of pathogenic vibrios in Chesapeake Bay. In: Colwell RR (ed) Vibrios in the environment. John Wiley and Sons, New York, pp 367–387

    Google Scholar 

  48. Conway N, Capuzzi JM (1991) Incorporation and utilization of bacterial lipids in the Solemya velum symbiosis. Mar Biol 108(2):277–292

    Google Scholar 

  49. Conway N, Capuzzo JM, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from stable isotope analysis of endosymbionts and host. Limnol Oceanogr 34(1):249–258

    Google Scholar 

  50. Crawford CS, Taylor EC (1984) Decomposition in arid environments: role of the detritivore gut. S Afric J Sci 80:170–176

    Google Scholar 

  51. Crosby MP, Peele ER (1987) Detection of bacterial populations in oyster tissue homogenates using direct microscopic counts and thymidine incorporation. J Exp Mar Biol Ecol 108:93–97

    Google Scholar 

  52. Cruden DL, Markovetz AJ (1979) Carboxymethyl cellulose decomposition by intestinal bacteria of cockroaches. Appl Environ Microbiol 38(3):369–372

    Google Scholar 

  53. Cuoma V, Vanzanella F, Fresi E, Cinelli F, Mazzella L (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84(1):35–40

    Google Scholar 

  54. Cutter JM, Rosenberg FA (1971) The role of cellulolytic bacteria in the digestive processes of the shipworm. II. Isolation and some properties of a marine bacterial cellulase. Mat Organ 7:225–239

    Google Scholar 

  55. Cutter JM, Rosenberg FA (1972) The role of cellulolytic bacteria in the digestive processes of the shipworm—requirement for the teredine borers. In: Walters AH, Hueck van der Plas EH (eds) Biodeterioration of materials, vol 2. Applied Science Publishers Ltd, London, pp 42–51

    Google Scholar 

  56. Davis JW, Sizemore RD (1982) Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl Environ Microbiol 43:1092–1097

    Google Scholar 

  57. De Ridder C, Jangoux M, De Vos L (1985) Description and significance of a particular intradigestive symbiosis between bacteria and a deposit-feeding echinoid. J Exp Mar Biol Ecol 91:65–76

    Google Scholar 

  58. Deming JW, Colwell RR (1981) Barophilic bacteria associated with deep-sea animals. BioScience 31:507–511

    Google Scholar 

  59. Deming JW, Colwell RR (1982) Barophilic bacteria associated with digestive tracts of abyssal holothurians. Appl Environ Microbiol 44:1221–1230

    Google Scholar 

  60. Deming JW, Tabor PS, Colwell RR (1981) Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb Ecol 7:85–94

    Google Scholar 

  61. Dempsey AC, Kitting CL (1987) Characteristics of bacteria isolated from penaeid shrimp. Crustaceana 52:90–94

    Google Scholar 

  62. Dempsey AC, Kitting CL, Rosson RA (1989) Bacterial variability among individual penaeid shrimp digestive tracts. Crustaceana 56(3):266–278

    Google Scholar 

  63. Dilmore LA, Hood MA (1986) Vibrios of some deep-water invertebrates. FEMS Microb Letters 35:221–224

    Google Scholar 

  64. Doores S, Cook TM (1976) Occurrence of Vibrio and other bacteria on the sea nettle, Chrysaora quinquecirrha. Microb Ecol 3:31–40

    Google Scholar 

  65. Doubrovsky A, Paynter JL, Sambhi SK, Atherton JG, Lester RJG (1988) Observations on the ultrastructure of baculovirus in Australian Penaeus monodon and Penaeus merguiensis. Aust J Mar Freshwater Res 39:743–749

    Google Scholar 

  66. Duchene JC, Imbaud P, Delille (1988) Associated bacterial microflora of a subantarctic polychaete worm Thelepus setosus. Arch Hydrobiol 112:221–231

    Google Scholar 

  67. Ellery WN, Schleyer MH (1984) Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria. Mar Ecol Prog Ser 15:247–250

    Google Scholar 

  68. Elleway RF, Sabine JR, Nicholas DJD (1971) Acetylene reduction by rumen microflora. Arch Mikrobiol 76:277–291

    Google Scholar 

  69. Elston R, Leibovitz L (1980) Pathogenesis of experimental vibriosis in larval American oysters (Crassostrea virginica). Can J Fish Aquat Sci 37:964–978

    Google Scholar 

  70. Elston R, Lockwood GS (1983) Pathogenesis of vibriosis in cultured juvenile red abolone, Haliotis nifescens Swainson. J Fish Dis 6:111–128

    Google Scholar 

  71. Felbeck H, Childress JJ, Somero GN (1983) Biochemical interactions between molluscs and their algal and bacterial symbionts. In: Hochachka PW (ed) The mollusca, vol 2. (Environmental Biochemistry and Physiology). Academic Press, New York, pp 331–358

    Google Scholar 

  72. Fenchel T (1970) Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol Oceanogr 51:14–20

    Google Scholar 

  73. Feral JP (1980) Cuticle et bacteries associees des epidermes digestif et tegamentaire de Leptosynapta galliennei (Herapath) (Holothurioidea: Apoda)—premieres donnees In: Jangoux M (ed) Echinoderms: present and past. AA Balkema, Rotterdam, pp 285–290

    Google Scholar 

  74. Findlay S, Tenore K (1982) Nitrogen source for a detritivore: detritus substrate versus associated microbes. Science 218:371–373

    CAS  Google Scholar 

  75. Fischer CR, Childress JJ (1986) Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya reidi. Mar Biol 93:59–68

    Google Scholar 

  76. Fisher WS, Nilson EH, Steenbergen JF, Lightner DV (1978) Microbial diseases of cultured lobsters: a review. Aquaculture 14:115–140

    Google Scholar 

  77. Fong W, Mann KH (1980) Role of gut flora in the transfer of amino acids through a marine food chain. Can J Fish Aquat Sci 37:88–96

    Google Scholar 

  78. Friedman CS, Beattie JH, Elston RA, Hedrick RP (1991) Investigation of the relationship between the presence of a gram-positive bacterial infection and summer mortality of the Pacific oyster, Crassostrea gigas Thunberg. Aquaculture 94:1–15

    Google Scholar 

  79. Friesen JA, Mann KH, Novitsky JA (1986) Mysis digests cellulose in the absence of a gut microflora. Can J Zool 64(2):442–446

    Google Scholar 

  80. Gallagher SM, Turner RD, Berg CJ (1981) Physiological aspects of wood composition, growth, and reproduction in the shipworm Lyrodotus pedicellatus Quatrefagus (Bivalvia: Teredinae). J Exp Mar Biol Ecol 52:63–77

    Google Scholar 

  81. Garland CD, Nash GV, McMeekin TA (1982) Absence of surface-associated microorganisms in adult oysters (Crassostrea gigas). Appl Environ Microbiol 44:1205–1211

    Google Scholar 

  82. Gjerde J (1984) Occurrence and characterisation of Aerococcus viridans from lobsters, Homarus gammarus L., dying in captivity. J Fish Dis 7(5):355–362

    Google Scholar 

  83. Greene RV, Griffin HL, Freer SN (1988) Purification and characterization of and extracellular endoglucanase from the marine shipworm bacterium. Arch Biochem Biophys 267:334–341

    Google Scholar 

  84. Greene RV, Cotta MA, Griffin HL (1989) A novel, symbiotic bacterium isolated from marine shipworm secretes proteolytic activity. Curr Microbiol 19:353–356

    Google Scholar 

  85. Griffin HL, Freer SN, Greene RV (1987) Extracellular endoglucanase activity by a novel bacterium isolated from marine shipworm. Biochem Biophys Res Comm 144(1):143–151

    Google Scholar 

  86. Guerinot ML, Fong W, Patriquin DG (1977) Nitrogen fixation (acetylene reduction) associated with sea urchins (Strongylocentrotus droebachiensis) feeding in seaweeds and eelgrass. J Fish Res Board Can 34:416–420

    Google Scholar 

  87. Guerinot ML, Patriquin DG (1981) The association of N2-fixing bacteria with sea urchins. Mar Biol 62:197–207

    Google Scholar 

  88. Guerinot ML, Patriquin DG (1981) N2-fixing vibrios isolated from the gastrointestinal tract of sea urchins. Can J Microbiol 27:311–317

    Google Scholar 

  89. Gunzl H (1991) The ultrastructure of the posterior gut and caecum in Alona affinis (Crustacea, Cladocera). Zoomorphology 110(3):139–144

    Google Scholar 

  90. Hanson RB, Tenore KR (1981) Microbial metabolism and incorporation by the polychaete Capitella capitata of aerobically and anaerobically decomposed detritus. Mar Ecol Prog Ser 8:299–307

    Google Scholar 

  91. Hargrave BT (1970) The utilization of benthic microflora by Hyalella azteca (Amphipoda). J Animal Ecol 39:427–437

    Google Scholar 

  92. Hargrave BT (1976) The central role of invertebrate faeces in sediment decomposition. Brit Ecol Soc Symp 17:301–321

    Google Scholar 

  93. Harris JM, Seiderer LJ, Lucas MI (1991) Gut microflora of two saltmarsh detritivore Thalassinid prawns, Upogebia africana and Callianassa kraussi. Microb Ecol 21:63–82

    Google Scholar 

  94. Herman SS, Coull BC, Brickman LM (1971) Infestation of harpacticoid copepods (Crustacea) with ciliate protozoans. J Aquat Invert Pathol 17:141–142

    Google Scholar 

  95. Herndl GJ, Velimirov B (1986) Role of bacteria in the gastral cavity of Anthozoa. Coll Int Bacteriol Mar IFREMER, Actes Colloque 3:407–414

    Google Scholar 

  96. Herry A, Diouris M, Le Pennec M (1989) Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101:305–312

    Google Scholar 

  97. Hidaka T (1954) On cellulose decomposing bacteria found in the digestive organs of Teredo. Mem Fac Fish Kagoshima Univ 3:149–157

    Google Scholar 

  98. Hidaka T, Saito K (1956) Studies on the cellulose decomposing bacteria in the digestive organs of the shipworm (Teredo navalis). II. On the bacterial cellulase. Mem Fac Fish Kagoshima Univ 5:172–177

    Google Scholar 

  99. Hockin DC (1984) Records of symbiotic protozoa from harpacticoid copepods of a sandy beach. Crustaceana 46(3):319–320

    Google Scholar 

  100. Hood MA, Meyers SP, Colmer AR (1971) Bacteria of the digestive tract of the white shrimp Penaeus setiferus. Bacteriol Proc 71:48

    Google Scholar 

  101. Hungate RE (1975) The rumen microbiol ecosystem. Annu Rev Ecol Syst 6:39–66

    Google Scholar 

  102. Hungate RE (1976) Microbial activities related to mammalian digestion and absorption of food. In: Spillar G, Amen R (eds) Fiber in human nutrition. Plenum Press, New York, pp 131–149

    Google Scholar 

  103. Huq A, Small EB, West PA, Huq I, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic Crustacea copepods. Appl Environ Microbiol 45:275–283

    Google Scholar 

  104. Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424

    Google Scholar 

  105. Huq A, Huq SA, Grimes DJ, O'Brien M, Chu KH, Capuzzi JM, Colwell RR (1986) Colonization of the gut of the blue crab Callinectes sapidus by Vibrio cholerae. Appl Environ Microbiol 52(3):586–588

    Google Scholar 

  106. Hylleberg J, Gallucci VF (1975) Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. Mar Biol 32:167

    Google Scholar 

  107. Hylleberg KJ (1972) Structure and function of crystalline style of bivalves. Ophelia 10:91–108

    Google Scholar 

  108. Imam SH, Greene RV, Griffin HL (1990) Adhesive properties of a symbiotic bacterium from a wood-boring marine shipworm. Appl Env Microbiol 56(5):1317–1322

    Google Scholar 

  109. Jannasch HW, Wirsen CO (1973) Deep sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643

    Google Scholar 

  110. Jannasch HW, Wirsen CO, Cutnel RL, Taylor CD (1980) An approach for in situ studies of deep-sea amphipods and their microbial gut flora. Deep-sea Res 27:867–872

    Google Scholar 

  111. Jensen KT, Siegismund HR (1980) The importance of diatoms and bacteria in the diet of Hydrobia-species. Ophelia (Suppl.) 1:193–199

    Google Scholar 

  112. Juilffs HB, Wagele JW (1987) Symbiontic bacteria in the gut of the blood-sucking Antarctic fish parasite Gnathia calva (Crustacea Isopoda). Mar Biol 95(4):493–499

    Google Scholar 

  113. Kadota H (1951) Studies on the biochemical activities of marine bacteria. I. On agar-decomposing bacteria in the sea. Mem Coll Agric Kyoto Univ 59:54–67

    Google Scholar 

  114. Kodata H (1953) Studies on the biochemical activities of marine bacteria. 11. On the properties of agar-digesting enzyme of Vibrio purpureus. Mem Coll Agric Kyoto Univ 66:31–38

    Google Scholar 

  115. Kadota H (1959) Cellulose decomposing bacteria in the sea. In: Ray DL (ed) Marine boring and fouling organisms. Univ of Washington Press, Seattle, pp 332–341

    Google Scholar 

  116. Kaneko T, Colwell RR (1975) Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl Microbiol 29(2):269–274

    Google Scholar 

  117. Kelly MD, Lukaschewsky S, Anderson CG (1978) Bacterial flora of Antarctic krill (Euphausia superba) and some of their enzymatic properties. J Food Sci 43:1196–1197

    Google Scholar 

  118. Kemp PF (1990) The fate of benthic bacterial production. Rev Aquat Sci 2(1):109–124

    Google Scholar 

  119. Klug MJ, Kotarski S (1980) Bacteria associated with the gut tract of larval stages of the aquatic cranefly Tipula abdominalis (Diptera:Tipulidae). Appl Environ Microbiol 40(2):408–416

    Google Scholar 

  120. Kobayashi Y, Tsubahi K, Soneda M (1953) Marine yeast isolated from little-neck clam. Bull Natl Sci Mus 33:47–52

    Google Scholar 

  121. Langdon CL, Newell RIE (1990) Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginicaand the mussel Geukensia demissa. Mar Ecol Prog Ser 58:299–310

    Google Scholar 

  122. Lasker R, Giese AC (1954) Nutrition of the sea urchin, Stongylocentrotus purpuratus. Biol Bull Woods Hole 106:328–340

    Google Scholar 

  123. Lawry EV (1987) Cryptomya californica Conrad 1837 observations on its habitat behaviour anatomy and physiology. Veliger 30(1):46–54

    Google Scholar 

  124. Lee A (1980) Normal flora of animal intestinal surfaces. In: Bitton G, Marshall KC (eds) Absorption of microorganisms to surfaces. John Wiley and Sons, New York, pp 145–173

    Google Scholar 

  125. Lee A (1985) Neglected niches. The microbial ecology of the gastrointestinal tract. Adv Microb Ecol 8:115–162

    Google Scholar 

  126. Lee JS, Pfiefer DK (1977) Microbiological characteristics of Pacific shrimp (Pandalus jordani). Appl Environ Microbiol 33:853–859

    Google Scholar 

  127. Lesser MP, Stochaj WR (1990) Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochlaron sp. and its Ascidian host. Appl Environ Microbiol 56(6):1530–1535

    Google Scholar 

  128. Lichtwardt RW (1961) A stomach fungus in Callianassa spp. (Decapoda) from Chile. Lunds Univ Arsskrift, Ny Följd, Audelningen 2, 57(6):3–10

    Google Scholar 

  129. Lichtwardt RW (1986) The trichomycetes. Fungal associates of arthropods. Springer-Verlag, New York, pp 1–343

    Google Scholar 

  130. Lynch JE (1929) Studies on the ciliates from the intestine of Strongylocentrotus. I. Entorhipidium gen nov. Univ Calif Publ Zool 33:27–56

    Google Scholar 

  131. Lynch JE (1930) Studies on the ciliates from the intestine of Strongylocentrotus. II. Lechrioipyla mystax, Gen nov., sp. nov. Univ Calif Publ Zool 33:307–350

    Google Scholar 

  132. Lynch JM, Hobbie JE (eds) (1988) The animal environment. In: Microorganisms in action: Concepts and applications in microbial ecology. Blackwell Scientific Publications, London, pp 163–192

    Google Scholar 

  133. Margulis L, Nault L, Sieburth JM (1991) Cristispira from oyster styles—complex morphology of large symbiotic spirochaetes. Symbiosis 11(1):1–18

    Google Scholar 

  134. Martin MM (1984) The role of ingested enzymes in the digested processes of insects. In: Anderson JM, Raynon ADM, Walton DWA (eds) Invertebarte-microbial interactions. Cambridge University Press, Cambridge, pp 155–177

    Google Scholar 

  135. Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–1455

    Google Scholar 

  136. Martinez JC (1982) The digestive microflora of Teredo navalis L. (Teredinidae;Bivalvia): metabolic properties and ultimate role in digestion. Bact Mar 331:151–154

    Google Scholar 

  137. Mattson RA (1988) Occurrence and abundance of eccrinaceous fungi (Trichomycetes) in Brachyuran crabs from Tampa Bay, Florida. J Crust Biol 8(1):20–30

    Google Scholar 

  138. Mayasich SA, Smucker RA (1987) Role of Cristospira sp. and other bacteria in the chitinase and chitobiase activities of the crystalline style of Crassostrea virginica (Gmelin). Microb Ecol 14:157–166

    Google Scholar 

  139. McBee RH (1971) Significance of intestinal microflora in herbivory. Annu Rev Ecol Syst 2:165–176

    Google Scholar 

  140. Mead LJ, Khachatourians GG, Jones GA (1988) Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera:Acrididae). Appl Environ Microbiol 54(5):1174–1181

    Google Scholar 

  141. Minet J, Barbosa T, Prieur D, Cormier M (1987) Mise en evidence du processus de concentration des batteries par la moule, Mytilus edulis (L.). CR Acad Sci Paris Ser III 305:351–354

    Google Scholar 

  142. Monk DC (1977) The digestion of cellulose and other dietary components, and pH of the gut in the amphipod Gammarus pulex L. Freshwater Biol 7:431–440

    Google Scholar 

  143. Moriarty DJW (1976) Quantitative studies on bacteria and algae in the food of the mullet Mugil cephalus L and the prawn Metapenaeus bennettae (Racek and Dall). J Exp Mar Biol Ecol 22:131–143

    Google Scholar 

  144. Moriarty DJW (1990) Interactions of microorganisms and aquatic animals, particularly the nutritional role of the gut microflora. In: Lesel R (ed): Microbiology in poecilotherms. Elsevier Science Publishers, Amsterdam, pp 217–222

    Google Scholar 

  145. Moriarty DJW, Pollard PC, Hunt WG, Moriarty CM, Wassenberg TJ (1985) Productivity of bacteria and microalgae and the effect of grazing by holothurians in sediments and a coral reef flat. Mar Biol 85:293–300

    Google Scholar 

  146. Morton B (1978) Feeding and digestion in sbipworms. Oceanogr Mar Biol Annu Rev 16:107–144

    Google Scholar 

  147. Musgrove RJ (1988) Digestive ability of the freshwater crayfish Paranephrops zealandicus (White) (parastacidae) and the role of microbial enzymes. Freshwater Biol 20:305–314

    Google Scholar 

  148. Nagasawa S, Nemoto T (1988) Presence of bacteria in guts of marine crustaceans and on their fecal pellets. J Plankton Res 10:559–564

    Google Scholar 

  149. Newell RC (1965) The role of detritus in the nutrition of two marine deposit feeders, the prosobranch, Hydrobia ulvae, and the bivalve, Macoma balthica. J Zool 144:25–44

    Google Scholar 

  150. O'Brien RW, Slaytor M (1982) Role of microorganisms in the metabolism of termites. Aust J Biol Sci 35:239–262

    Google Scholar 

  151. Odintsov VS (1981) Nitrogen fixation (acetylene reduction) in the digestive tract of some echinoderms from Vostok Bay in the sea of Japan. Mar Biol Lett 2:259–263

    Google Scholar 

  152. Ohmart CP, Thomas JR, Bubela B (1988) Surfactant-producing microorganisms isolated from the gut of a Eucalyptus-feeding sawfly, Perga affinis affinis. Oecologia 77:140–142

    Google Scholar 

  153. Ohwada K, Tabor PS, Colwell RR (1980) Species composition and barotolerance of gut microflora of deep-sea benthic macrofauna collected at various depths in the Atlantic Ocean. Appl Environ Microbiol 40:746–755

    Google Scholar 

  154. Overstreet RM (1983) Metazoan symbionts of crustaceans. In: Bliss DE (ed) Pathobiology. (The biology of crustacea, vol 6) Academic Press, London, pp 155–250

    Google Scholar 

  155. Payne DW, Thorpe NA, Donaldson EM (1972) Cellulolytic activity and a study of the bacterial production in the digestive tract of Scrobicularia plana (Da Costa). Proc Malac Soc Lond 40:147–160

    Google Scholar 

  156. Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35(3):283–298

    Google Scholar 

  157. Pitts GY, Cowley GT (1974) Mycoflora of the habitat and midgut of the fiddler crab Uca pugilator. Mycologia 66:669–675

    Google Scholar 

  158. Plante CJ, Jumars PA, Baross JA (1989) Rapid bacterial growth in the hindgut of a marine deposit feeder. Microb Ecol 18:29–44

    Google Scholar 

  159. Plante CJ, Jumars PA, Baross JA (1990) Digestive associations between marine detritivores and bacteria. Annu Rev Ecol Syst 21:93–127

    Google Scholar 

  160. Popham JD (1975) Further observations of the gland of Deshayes in the teredo Bankia australia (Bivalvia, Mollusca). Veliger 18:55–58

    Google Scholar 

  161. Popham JD, Dickson MR (1973) Bacterial associations in the teredo Bankia australia (Lamelli-branchia, Mollusca). Mar Biol 19:338–340

    Google Scholar 

  162. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78(7):4601–4605

    Google Scholar 

  163. Prestwich GD, Bentley BL, Carpenter EJ (1980) Nitrogen sources for neotropical nasute termites: fixation and selective foraging. Oecologia 46:397–401

    Google Scholar 

  164. Prieur D (1980) Observations de coupes histologiques en microscopic electronique a balayage: application a Fetude de microorganismes dans le tractus digestif de Mytilus edulis. C R Acad Sci Ser D 290:1087–1089

    Google Scholar 

  165. Prieur D (1981) Experimental studies of trophic relationships between marine bacteria and bivalve molluscs. Kieler Meeresforsch Sonderh. 5:376–383

    Google Scholar 

  166. Prieur D (1981) Nouvelles donnees sur les relations entre bacteries et bivalves marins. Haliotis 11:251–260

    Google Scholar 

  167. Prieur D (1982) La microflore du tractus digestif des bivalves marins: etude experimentale chez la moule, Mytilus edulis. Malacologia 22:653–658

    Google Scholar 

  168. Prieur D, Mevel G, Nicolas JL, Plusquellec A, Vigneulle M (1990) Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr Mar Biol Annu Rev 28:277–352

    Google Scholar 

  169. Prim P, Lawrence JM (1975) Utilization of marine plants and their constituents by bacteria isolated from the gut of Echinoids (Echinodermata). Mar Biol 33:167–173

    Google Scholar 

  170. Provenzano AJ (ed) 1983 Pathobiology, Volume 6. In: Bliss DE (ed), The biology of Crustacea. Academic Press, London, pp 290

    Google Scholar 

  171. Ray DL, Julian JR (1952) Occurrence of cellulase in Limnoria. Nature 169:32–33

    Google Scholar 

  172. Rose AS, Ellis AE, Adams A (1989) An assessment of routine Aeromonas salmonicida carrier detection by ELISA. Bull Eur Assoc Fish Pathol 9:65–67

    Google Scholar 

  173. Rosenberg FA, Breiter H (1969) The role of cellulolytic bacteria in the digestive processes of the shipworm. I. Isolation of some cellulolytic microorganisms from the digestive system of Teredine borers and associated waters. Mat Organ 4:147–159

    Google Scholar 

  174. Saito K, Hidaka T (1954) Studies on the cellulose decomposing bacteria in the digestive organs of the shipworm (Teredo navalis). III. Relation between the enzyme of the digestive organs and the bacterial enzyme. Mem Fac Fish Kagoshima Univ 3:50–55

    Google Scholar 

  175. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Carribean Sclerosponge Ceratoporella nicholsoni. Appl Env Microbiol 56(6):1750–1762

    Google Scholar 

  176. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107–133

    Google Scholar 

  177. Schallenberg M, Kalff J, Kasmussen JB (1989) Solutions to problems in enumerating sediment bacteria by direct counts. Appl Environ Microb 55(5):1214–1219

    Google Scholar 

  178. Schwarz JR, Yayanos AA, Colwell RR (1976) Metabolic activities of the intestinal microflora of a deep-sea invertebrate. Appl Environ Microbiol 31(1):46–48

    Google Scholar 

  179. Scrivener AM, Slaytor M, Rose HA (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata saussure, an Australian wood-eating cockroach. J Insect Physiol 35(12):935–941

    Google Scholar 

  180. Seiderer LJ, Newell RC (1988) Exploitation of phytoplankton as a food resource by the kelp bed ascidian Pyura stolonifera. Mar Ecol Prog Ser 50:107–115

    Google Scholar 

  181. Seiderer LJ, Newell RC, Schultes K, Robb FT, Turley CM (1987) Novel bacteriolytic activity associated with the style microflora of the mussel Mytilus edulis (L.). J Exp Mar Biol Ecol 110:213–324

    Google Scholar 

  182. Shivokene Ya S, Sinyavichene DP, Shal'chyute BP (1986) Ecological and physiological features of bivalve mollusks of the superfamily Unionaceae 6. Functional activity of the microorganisms of the digestive system of Unio tumidas as a function of its diet. Liet Tsr Mokslu Akad Darb Ser C Biol Mokslai 6(3):28–33

    Google Scholar 

  183. Shivokene Ya S, Sinyavichene DP, Shal'chyute BP (1987) Ecophysiological characteristics of bivalves of the superfamily Unionacea. VII. Microflora of the alimentary system of the mussel Anodonta piscinalis as a function of the feeding pattern. Liet Tsr Mokslu Akad Darb Ser C Biol Mokslai 7(2):48–54

    Google Scholar 

  184. Simidu U, Ashino K, Kaneko T (1971) Bacterial flora of phyto- and zoo-plankton in the inshore water of Japan. Can J Microbiol 17:1157–1160

    Google Scholar 

  185. Sizemore RK, Colwell RR, Tubiash HS, Lovelace TE (1975) Bacterial flora of the haemolymph of the blue crab, Callinectes sapidus: numerical taxonomy. Appl Environ Microb 29:393–399

    Google Scholar 

  186. Sleeter TD, Boyle PJ, Cundell AM, Mitchell R (1978) Relationships between marine microorganisms and the wood-boring isopod Limnoria tripunctata. Mar Biol 45:329–336

    Google Scholar 

  187. Sochard MR, Wilson DF, Austin B, Colwell RR (1979) Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol 37:570–579

    Google Scholar 

  188. Sugita H, Takahashi T, Kanemoto FI, Degushi Y (1987) Aerobic bacterial flora in the digestive tracts of freshwater shrimp Palaemon paucidens acclimated with seawater. Nipp Suisan Gakkaishi 53(3):511

    Google Scholar 

  189. Sugita H, Ueda R, Berger LR, Deguchi Y (1987) Microflora in the gut of Japanese coastal crustacea. Bull Jpn Soc Sci Fish 53(9):1647–1655

    Google Scholar 

  190. Sugita H, Ueda S, Ueda R, Degushi Y (1987) Morphology and brief characteristics of Vibrio sp. isolated from marine Crustacea. Bull Coll Agric Vet Med Nihon Univ 44:160–164

    Google Scholar 

  191. Sweijd NA, Pillay D, McQuaid CD, Bandu VH, Baecker AAW (1989) Filamentous structures associated with the gut mucosa of the sea urchin Parechinus angulosus. Electron Microsc Soc S A 19:99–100

    Google Scholar 

  192. Tabor PS, Deming JW, Ohwada K, Colwell RR (1982) Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples. Appl Environ Microbiol 44:413–422

    Google Scholar 

  193. Tall BD, Nauman RK (1981) Scanning electron microscopy of Cristispira species in Chesapeake Bay oysters. Appl Environ Microbiol 42:336–343

    Google Scholar 

  194. Tanikawa E (1937) Biological studies on organisms of coli-group isolated from the intestines of oysters. Arch Mikrobiol 8:288–306

    Google Scholar 

  195. Terasaki Y (1958) Studies on Cristispira in the crystalline style of the freshwater snail, Semisulcospira libertina (Gould). I. The morphological characters and the living condition within the style. Bull Suzugamine Womens Coll 5:7–19

    Google Scholar 

  196. Thayer DW (1978) Carboxymethylcellulose produced by facultative bacteria from the hindgut of the termite Reticulitermes hesperus. J Gen Microbiol 106:13–18

    Google Scholar 

  197. Tugwell S, Branch GM (1991) Effects of herbivore gut surfactants on kelp polyphenol defenses. Ecology 73(1):205–215

    Google Scholar 

  198. Ueda R, Sugita H, Degushi Y (1988) Numerical taxonomy of vibrios isolated from coastal crustacea of Japan. Bull Coll Agric Vet Med Nihon Univ 8(45):227–235

    Google Scholar 

  199. Ulrich RG, Buthala DA, King MJ (1981) Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domestica. Appl Environ Microbiol 41(1):246–254

    Google Scholar 

  200. Unestam T (1981) Fungal diseases of freshwater and terrestrial Crustacea. In: Davidson EW (ed) Pathogenesis of invertebrate microbial diseases, John Wiley and Sons, New York, pp 485–507

    Google Scholar 

  201. Unkles SE (1977) Bacterial flora of the sea urchin Echinus esculentus. Appl Environ Microbiol 34:347–350

    Google Scholar 

  202. Vacelet J (1975) Etude et microscopie electronique de l'association entre bacteries et spongaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  203. Vacelet J, Donaday C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Google Scholar 

  204. Vanderzant C, Mroz, Nickleson R (1970) Microbial flora of Gulf of Mexico and pond shrimp. J Milk Food Technol 33:346–350

    Google Scholar 

  205. Vitalis TZ, Spence MJ, Carefoot TH (1988) The possible role of gut bacteria in nutrition and growth of the sea hare Aplysia. Veliger 30(4):333–341

    Google Scholar 

  206. Vivares BM, Baleux B (1984) Parasitism and digestive bacterial flora in decapods (Crustacea). In: Tumbay E, Yasarol S, Ozcel MA (eds) The fourth European multicolloquium of parasitology, Izmir, Turkey pp 202–203

  207. Wagner-Merner DT (1979) Observations on a trichomycete from Uca pugilator. Mycologia 71:669–671

    Google Scholar 

  208. Wagner-Merner DT, Lawrence JM (1980) Occurrence of fungi (Thraustochytriaceae) in the gut of Lytechinus variegatus (Lamarck) (Echinodermata:Echinoidea). Florida Sci 43(1):62–63

    Google Scholar 

  209. Wainwright PF, Mann KH (1982) Effect of antimicrobial substances on the ability of the mysid shrimp Mysis stenolepis to digest cellulose. Mar Ecol Prog Ser 7:309–313

    Google Scholar 

  210. Wardlaw AC, Unkles SE (1978) Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. J Invert Pathol 32:25–34

    Google Scholar 

  211. Waterbury JB, Calloway CB, Turner RD (1983) A cellulolytic nitrogen fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia:Teredinidae). Science 221:1401–1403

    Google Scholar 

  212. Wavre M, Brikhurst RO (1971) Interactions between some tubificid oligochaetes and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Board Can 28(3):335–341

    Google Scholar 

  213. Wilkinson CR (1978) Microbial associations in sponges. I. Ecology, physiology, and microbial populations of coral reef sponges. Mar Biol 49:161–167

    Google Scholar 

  214. Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176

    Google Scholar 

  215. Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol 49:177–185

    Google Scholar 

  216. Wilkinson CR, Garrone R (1980) Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC and Tiffon Y (eds) Nutrition in the lower metazoa. Pergamon Press Inc, Oxford, pp 157–161

    Google Scholar 

  217. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier reef sponges. Microb Ecol 7:13–21

    Google Scholar 

  218. Wilkinson CR, Garrone R, Vacelot J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc London Sect B220:519–528

    Google Scholar 

  219. Williams OB, Rees HB Jr (1952) The bacteriology of Gulf Coast shrimp. III. The internal flora. Texas J Sci 1:55–58

    Google Scholar 

  220. Williams OB, Campbell Jr L, Rees HB (1952) The bacteriology of Gulf Coast Shrimp. II. Qualitative observations on the external flora. Texas J Sci 4(1):53–54

    Google Scholar 

  221. Wirsen CO, Jannasch HW (1983) In situ studies on deep sea amphipods and their intestinal microflora. Mar Biol 78:69–73

    Google Scholar 

  222. Woollacot RM (1981) Association of bacteria with bryozoan larvae. Mar Biol 65(2):155–158

    Google Scholar 

  223. Yasuda K, Kitao T (1980) Bacterial flora in the digestive tracts of prawns, Penaeus japonicas Bate. Aquaculture 19(3):229–234

    Google Scholar 

  224. Yayanos AA, Dietz AS, vam Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–809

    Google Scholar 

  225. Zachary A, Colwell RR (1979) Gut-associated microflora of Limnoria tripunctata in marine creosote-treated wood pilings. Nature (Lond) 282:716–717

    Google Scholar 

  226. Zachary A, Parrish KK, Bultman JD (1983) Possible role of marine bacteria in providing the creosote-resistance of Limnoria tripunctata. Mar Biol 75(1):1–8

    Google Scholar 

  227. Zobell CE, Feltham CB (1937) Bacteria as food for certain marine invertebrates. J Mar Res 1–2:312–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.M. The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis. Microb Ecol 25, 195–231 (1993). https://doi.org/10.1007/BF00171889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171889

Keywords

Navigation