Skip to main content

Metabolic Control Analysis

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Topics in Current Genetics ((TCG,volume 13))

Abstract

Metabolic Control Analysis (MCA) is a theoretical framework for investigating and understanding control and regulation of metabolism. In particular, it relates the properties of metabolic systems to the kinetic characteristics of the component enzymes. However, not all of the properties of enzymes strongly influence the be-haviour of metabolic systems, some of which is generic and is reviewed here. It is argued that MCA is an important component of systems biology that still has much to offer in the development of predictive and integrative biology and the linking of genome to phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Brand MD, Hafner RP, Brown GC (1988) Control of respiration in non-phosphorylating mitochondria is not shared between the proton leak and the respiratory chain. Biochem J 255:535-539

    PubMed  Google Scholar 

  • 2. Brown GC (1994) Control analysis applied to the whole body: Control by body organs over plasma concentrations and organ fluxes of substances in the blood. Biochem J 297:115-122

    PubMed  Google Scholar 

  • 3. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312:163-167

    PubMed  Google Scholar 

  • 4. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243-249

    Article  PubMed  Google Scholar 

  • 5. Cornish-Bowden A, Cárdenas ML (2001) Information transfer in metabolic pathways. Ef-fects of irreversible steps in computer models. Eur J Biochem 268:6616-6624

    Article  PubMed  Google Scholar 

  • 6. Cornish-Bowden A, Hofmeyr JHS (1994) Determination of control coefficients in intact metabolic systems. Biochem J 298(Mar):367-375

    PubMed  Google Scholar 

  • 7. Crabtree B, Newsholme EA (1985) A quantitative approach to metabolic control. Curr Top Cell Regul 25:21-76

    PubMed  Google Scholar 

  • 8. Eisenthal R, Cornish-Bowden A (1998) Prospects for antiparasitic drugs: The case of Try-panosoma brucei, the causative agent of African sleeping sickness. J Biol Chem 273:5500-5505

    Article  PubMed  Google Scholar 

  • 9. Fell DA (1997) Understanding the Control of Metabolism. Portland Press, London

    Google Scholar 

  • 10. Fell DA (2000) Signal transduction and the control of expression of enzyme activity. Ad-van Enzym Regul 40:35-46

    Google Scholar 

  • 11. Fell DA (2001) Beyond genomics. Trends Genet 17:680-682

    Article  PubMed  Google Scholar 

  • 12. Fell DA, Sauro HM (1985) Metabolic Control Analysis: Additional relationships between elasticities and control coefficients. Eur J Biochem 148:555-561

    Article  PubMed  Google Scholar 

  • 13. Fell DA, Thomas S (1995) Physiological control of flux: the requirement for multisite modulation. Biochem J 311:35-39

    PubMed  Google Scholar 

  • 14. Groen AK, van der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM, Tager JM (1982) Control of metabolic fluxes. Metabolic Compartmentation, ed. Sies H, Aca-demic Press, London, pp. 9-37

    Google Scholar 

  • 15. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains; gen-eral properties, control and effector strength. Eur J Biochem 42:89-95

    Article  PubMed  Google Scholar 

  • 16. Hofmeyr JHS, Cornish-Bowden A (1991) Quantitative assessment of regulation in meta-bolic systems. Eur J Biochem 200:223-236

    Article  PubMed  Google Scholar 

  • 17. Hofmeyr JHS, Cornish-Bowden A (2000) Regulating the cellular economy of supply and demand. FEBS Lett 476:47-51

    Article  PubMed  Google Scholar 

  • 18. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a sys-tematically perturbed metabolic network. Science 292:929-934

    Article  PubMed  Google Scholar 

  • 19. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22:86-92

    Article  PubMed  Google Scholar 

  • 20. Jensen PR, Van der Weijden CC, Jensen LB, Westerhoff HV, Snoep JL (1999) Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur J Biochem 266:865-877

    Article  PubMed  Google Scholar 

  • 21. Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem 216:361-367

    Article  PubMed  Google Scholar 

  • 22. Kacser H, Beeby R (1984) Evolution of catalytic proteins or on the origin of enzyme spe-cies by means of natural selection. J Mol Evol 20:38-51

    Article  PubMed  Google Scholar 

  • 23. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65-104. Reprinted in Biochem Soc Trans (1995) 23:341-366

    Google Scholar 

  • 24. Kacser H, Burns JA (1979) Molecular democracy: who shares the controls? Biochem Soc Trans 7:1149-1160

    PubMed  Google Scholar 

  • 25. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639-666

    PubMed  Google Scholar 

  • 26. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255-285

    PubMed  Google Scholar 

  • 27. Klipp E, Heinrich R (1999) Competition for enzymes in metabolic pathways: Implications for optimal distributions of enzyme concentrations and for the distribution of flux con-trol. Biosystems 54:1-14

    Article  PubMed  Google Scholar 

  • 28. Korzeniewski B (2003) Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Biochem J 375:799-804

    Article  PubMed  Google Scholar 

  • 29. Korzeniewski B, Harper ME, Brand MD (1995) Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or vasopressin. Bio-chim Biophys Acta 1229:315-322

    Google Scholar 

  • 30. Krauss S, Brand MD (2000) Quantitation of signal transduction. FASEB J 14:2581-2588

    Article  PubMed  Google Scholar 

  • 31. Newsholme EA, Start C (1973) Regulation in Metabolism. Wiley and Sons, London

    Google Scholar 

  • 32. Orr HA (1991) A test of Fisher's theory of dominance. Proc Natl Acad Sci USA 88:11413-11415

    PubMed  Google Scholar 

  • 33. Peletier MA, Westerhoff HV, Kholodenko BN (2003) Control of spatially heterogeneous and time-varying cellular reaction networks: A new summation law. J Theor Biol 225:477-487

    Article  PubMed  Google Scholar 

  • 34. Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, Dam KV, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of si-lent mutations. Nat Biotechnol 19:45-50

    Article  PubMed  Google Scholar 

  • 35. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175-201

    PubMed  Google Scholar 

  • 36. Savageau MA (1976) Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, Mass

    Google Scholar 

  • 37. Schafer JRA, Fell DA, Rothman D, Shulman RG (2004) Protein phosphorylation can regu-late metabolite concentrations rather than control flux: The example of glycogen syn-thase. Proc Natl Acad Sci USA 101:1485-1490

    Article  PubMed  Google Scholar 

  • 38. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48(1):1-17

    Article  PubMed  Google Scholar 

  • 39. Schuster S, Klamt S, Weckwerth W, Moldenhauer F, Pfieffer T (2002) Use of network analysis of metabolic systems in bioengineering. Bioprocess Biosyst Eng 24:363-372

    Article  Google Scholar 

  • 40. Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme ac-tivities and effectors. 1. the linear treatment of unbranched chains. Eur J Biochem 213:613-624

    Article  PubMed  Google Scholar 

  • 41. ter Kuile BH (1996) Metabolic adaptation of Trichomonas vaginalis to growth rate and glucose availability. Microbiology 142:3337-3345

    PubMed  Google Scholar 

  • 42. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: Hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169-171

    Article  PubMed  Google Scholar 

  • 43. Thomas, S, Fell, DA (1996) Design of metabolic control for large flux changes. J. Theor Biol 182: 285-298

    Article  Google Scholar 

  • 44. Vogt AM, Poolman M, Ackermann C, Yildiz M, Schoels W, Fell DA, Kubler W (2002) Regulation of glycolytic flux in ischemic preconditioning - A study employing meta-bolic control analysis. J Biol Chem 277:24411-24419

    Article  PubMed  Google Scholar 

  • 45. Weibel ER (2000) Symmorphosis. On Form and Function in Shaping Life. Harvard Uni-versity Press, Cambridge

    Google Scholar 

  • 46. Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hy-pothesis of structure-function relationship. Proc Natl Acad Sci USA 88:10357-10361

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Fell .

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Fell, D.A. Metabolic Control Analysis. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137745

Download citation

Publish with us

Policies and ethics