Skip to main content

Advertisement

Log in

The enigma of hyperparathyroidism in hypophosphatemic rickets

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Familial hypophosphatemic rickets (XLH) is caused by inactivating mutations of the cell surface metalloproteinase PHEX. It is characterized by low-normal serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], normocalcemia, and hypophosphatemia. Hyperparathyroidism is regularly seen in patients treated with phosphate supplements, although circulating serum phosphate levels do not reach the normal range. The mechanism is unknown. Decreased serum concentrations of ionized calcium following phosphate supplements might contribute to the development of hyperparathyroidism. Secondary and even tertiary hyperparathyroidism can, however, be observed in patients who have never received phosphate treatment. This points to an abnormal regulation of production and/or degradation of parathyroid hormone (PTH). Recently, the expression of the PHEX gene in hypertrophied parathyroid glands of a patient with XLH has been reported. It is unclear whether the mutant PHEX gene can induce hyperparathyroidism by abnormal regulation of peptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. The HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136

    PubMed  Google Scholar 

  2. Guo R, Quarles LD (1997) Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res 12:1009–1017

    CAS  PubMed  Google Scholar 

  3. Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981

    CAS  PubMed  Google Scholar 

  4. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426

    Article  CAS  PubMed  Google Scholar 

  5. Insogna KL, Broadus AE, Gertner JM (1983) Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest 71:1562–1569

    CAS  PubMed  Google Scholar 

  6. Azam N, Zhang MY, Wang X, Tenenhouse HS, Portale AA (2003) Disordered regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (hyp) mice. Endocrinology 144:3463–3468

    Article  CAS  PubMed  Google Scholar 

  7. Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A (1972) Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med 287:481–487

    CAS  PubMed  Google Scholar 

  8. Krohn HP, Offermann G, Brandis M, Brodehl J, Hanke K, Offner G (1997) Occurrence of hyperparathyroidism in children with X-linked hypophosphatemia under treatment with vitamin D and phosphate. Adv Exp Med Biol 81:345–351

    Google Scholar 

  9. Albright F, Butler AM, Bloomberg E (1937) Rickets resistant to vitamin D therapy. Am J Dis Child 54:529–547

    Google Scholar 

  10. Thomas WC Jr, Fry RM (1970). Parathyroid adenomas in chronic rickets. Am J Med 49:404–407

    PubMed  Google Scholar 

  11. Alon U, Newsome H Jr, Chan JC (1984) Hyperparathyroidism in patients with X-linked dominant hypophosphatemic rickets—application of the calcium infusion test as an indicator for parathyroidectomy. Int J Pediatr Nephrol 5:39–43

    CAS  PubMed  Google Scholar 

  12. Firth RG, Grant CS, Riggs BL (1985) Development of hypercalcemic hyperparathyroidism after long-term phosphate supplementation in hypophosphatemic osteomalacia. Report of two cases. Am J Med 78:669–673

    CAS  PubMed  Google Scholar 

  13. Rivkees SA, el-Hajj-Fuleihan G, Brown EM, Crawford JD (1992) Tertiary hyperparathyroidism during high phosphate therapy of familial hypophosphatemic rickets. J Clin Endocrinol Metab 75:1514–1518

    Google Scholar 

  14. Knudtzon J, Halse J, Monn E, Nesland A, Nordal KP, Paus P, Seip M, Sund S, Sodal G (1995) Autonomous hyperparathyroidism in X-linked hypophosphataemia. Clin Endocrinol (Oxf) 42:199–203

    Google Scholar 

  15. Narvaez J, Rodriguez-Moreno J, Moragues C, Campoy E, Clavaguera T, Roig-Escofet D (1996) Tertiary hyperparathyroidism after long-term phosphate supplementation in adult-onset hypophosphataemic osteomalacia. Br J Rheumatol 35:598–600

    Article  CAS  PubMed  Google Scholar 

  16. Wu CJ, Song YM, Sheu WH (2000) Tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Intern Med 39:468–471

    CAS  PubMed  Google Scholar 

  17. Makitie O, Kooh SW, Sochett E (2003) Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin Endocrinol (Oxf) 58:163–168

    Google Scholar 

  18. Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K (1992) A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 75:879–885

    Article  CAS  PubMed  Google Scholar 

  19. Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M (1991) Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med 325:1843–1848

    Google Scholar 

  20. Alon US, Monzavi R, Lilien M, Rasoulpour M, Geffner ME, Yadin O (2003) Hypertension in hypophosphatemic rickets—role of secondary hyperparathyroidism. Pediatr Nephrol 18:155–158

    PubMed  Google Scholar 

  21. Nehgme R, Fahey JT, Smith C, Carpenter TO (1997) Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J Clin Endocrinol Metab 82:2450–2454

    Google Scholar 

  22. Moltz KC, Friedman AH, Nehgme RA, Kleinman CS, Carpenter TO (2001) Ectopic cardiac calcification associated with hyperparathyroidism in a boy with hypophosphatemic rickets. Curr Opin Pediatr 13:373–375

    Article  CAS  PubMed  Google Scholar 

  23. Brown EM (2000) Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 1:307–315

    Google Scholar 

  24. Mayer GP, Keaton JA, Hurst JG, Habener JF (1979) Effects of plasma calcium concentration on the relative proportion of hormone and carboxyl fragments in parathyroid venous blood. Endocrinology 104:1778–1784

    CAS  PubMed  Google Scholar 

  25. Kifor O, Moore FD Jr, Wang P, Goldstein M, Vassilev P, Kifor I, Hebert SC, Brown EM (1996) Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab 81:1598–1606

    CAS  PubMed  Google Scholar 

  26. Brown AJ, Zhong M, Ritter C, Brown EM, Slatopolsky E (1995) Loss of calcium responsiveness in cultured bovine parathyroid cells is associated with decreased calcium receptor expression. Biochem Biophys Res Commun 212:861–867

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant. 11:1762–1768

    Google Scholar 

  28. Silver J, Kilav R, Naveh-Many T (2002) Mechanisms of secondary hyperparathyroidism. Am J Physiol Renal Physiol 283:F367–F376

    CAS  PubMed  Google Scholar 

  29. Moallem E, Kilav R, Silver J, Naveh-Many T (1998) RNA-protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 273:5253–5259

    CAS  PubMed  Google Scholar 

  30. Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM (1986) Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 78:1296–1301

    CAS  PubMed  Google Scholar 

  31. Naveh-Many T, Rahamimov R, Livni N, Silver J (1995) Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D. J Clin Invest 96:1786–1793

    CAS  PubMed  Google Scholar 

  32. Cozzolino M, Lu Y, Finch J, Slatopolsky E, Dusso AS (2001) p21WAF1 and TGF-alpha mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int 60:2109–2117

    Article  CAS  PubMed  Google Scholar 

  33. Drueke TB (2000) Cell biology of parathyroid gland hyperplasia in chronic renal failure. J Am Soc Nephrol 11:1141–1152

    CAS  PubMed  Google Scholar 

  34. Hsi ED, Zukerberg LR, Yang WI, Arnold A (1996) Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 81:1736–1739

    Google Scholar 

  35. Heppner C, Kester MB, Agarwal SK, Debelenko LV, Emmert-Buck MR, Guru SC, Manickam P, Olufemi SE, Skarulis MC, Doppman JL, Alexander RH, Kim YS, Saggar SK, Lubensky IA, Zhuang Z, Liotta LA, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ (1997) Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 16:375–378

    CAS  PubMed  Google Scholar 

  36. Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RS, Arnold A (1998) Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 83:1766–1770

    Article  CAS  PubMed  Google Scholar 

  37. Imanishi Y, Tahara H, Palanisamy N, Spitalny S, Salusky IB, Goodman W, Brandi ML, Drueke TB, Sarfati E, Urena P, Chaganti RS, Arnold A (2002) Clonal chromosomal defects in the molecular pathogenesis of refractory hyperparathyroidism of uremia. J Am Soc Nephrol 13:1490–1498

    CAS  PubMed  Google Scholar 

  38. Tominaga Y, Tsuzuki T, Uchida K, Haba T, Otsuka S, Ichimori T, Yamada K, Numano M, Tanaka Y, Takagi H (1999) Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in parathyroid hyperplasia caused by chronic renal failure versus primary adenoma. Kidney Int 55:1375–1383

    Article  CAS  PubMed  Google Scholar 

  39. Carpenter TO, Mitnick MA, Ellison A, Smith C, Insogna KL (1994) Nocturnal hyperparathyroidism: a frequent feature of X-linked hypophosphatemia. J Clin Endocrinol Metab 78:1378–1383

    Article  CAS  PubMed  Google Scholar 

  40. Adler AJ, Ferran N, Berlyne GM (1985) Effect of inorganic phosphate on serum ionized calcium concentration in vitro: a reassessment of the “trade-off hypothesis”. Kidney Int 28:932–935

    Google Scholar 

  41. Ritz E, Malluche HH, Krempien B, Tschope W, Massry SG (1978) Pathogenesis of renal osteodystrophy: roles of phosphate and skeletal resistance to PTH. Adv Exp Med Biol 103:423–436

    CAS  PubMed  Google Scholar 

  42. Sato K, Obara T, Yamazaki K, Kanbe M, Nakajima K, Yamada A, Yanagisawa T, Kato Y, Nishikawa T, Takano K (2001) Somatic mutations of the MEN1 gene and microsatellite instability in a case of tertiary hyperparathyroidism occurring during high phosphate therapy for acquired, hypophosphatemic osteomalacia. J Clin Endocrinol Metab 86:5564–5571

    Article  CAS  PubMed  Google Scholar 

  43. Blydt-Hansen TD, Tenenhouse HS, Goodyer P (1999) PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linked hypophosphatemia. Pediatr Nephrol 13:607–611

    Google Scholar 

  44. Kiebzak GM, Roos BA, Meyer RA Jr (1982) Secondary hyperparathyroidism in X-linked hypophosphatemic mice. Endocrinology 111:650–652

    CAS  PubMed  Google Scholar 

  45. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  PubMed  Google Scholar 

  46. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  47. Quarles LD (2003) FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 285:E1–9

    CAS  PubMed  Google Scholar 

  48. Guo R, Liu S, Spurney RF, Quarles LD (2001) Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab 281:E837–E847

    CAS  PubMed  Google Scholar 

  49. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    Article  CAS  PubMed  Google Scholar 

  50. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182

    CAS  PubMed  Google Scholar 

  51. Bai XY, Miao D, Goltzman D, Karaplis AC (2003) The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 278:9843–9849

    Article  CAS  PubMed  Google Scholar 

  52. Smith R, Newman RJ, Radda GK, Stokes M, Young A (1984) Hypophosphataemic osteomalacia and myopathy: studies with nuclear magnetic resonance spectroscopy. Clin Sci (Lond) 67:505–509

    Google Scholar 

  53. Latta K, Hisano S, Chan JC (1993) Therapeutics of X-linked hypophosphatemic rickets. Pediatr Nephrol 7:744–748

    CAS  PubMed  Google Scholar 

  54. Reusz GS (1995) Guide-lines to the treatment of patients with X-linked hypophosphatemic rickets. Acta Biomed Ateneo Parmense 66:147–151

    CAS  PubMed  Google Scholar 

  55. Seikaly MG, Baum M (2001) Thiazide diuretics arrest the progression of nephrocalcinosis in children with X-linked hypophosphatemia. Pediatrics 108:E6

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Mehls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, C.P., Mehls, O. The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatr Nephrol 19, 473–477 (2004). https://doi.org/10.1007/s00467-004-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1443-y

Keywords

Navigation