Skip to main content
Log in

Holographic evolution of entanglement entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the evolution of entanglement entropy in a 2-dimensional equilibration process that has a holographic description in terms of a Vaidya geometry. It models a unitary evolution in which the field theory starts in a pure state, its vacuum, and undergoes a perturbation that brings it far from equilibrium. The entanglement entropy in this set up provides a measurement of the quantum entanglement in the system. Using holographic techniques we recover the same result obtained before from the study of processes triggered by a sudden change in a parameter of the hamiltonian, known as quantum quenches. Namely, entanglement in 2-dimensional conformal field theories propagates with velocity v 2 = 1 [1]. Both in quantum quenches and in the Vaidya model equilibration is only achieved at the local level. Remarkably, the holographic derivation of this last fact requires information from behind the apparent horizon generated in the process of gravitational collapse described by the Vaidya geometry. In the early stages of the evolution the apparent horizon seems however to play no relevant role with regard to the entanglement entropy. We speculate on the possibility of deriving a thermalization time for occupation numbers from our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Calabrese and J .L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [SPIRES].

  2. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  3. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  4. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  5. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  7. P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. 101 (2008) 190403 [SPIRES].

    Article  ADS  Google Scholar 

  8. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [SPIRES].

  9. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-fromequilibrium dynamics in N =4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].

    ADS  Google Scholar 

  14. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/ CFT , JHEP 07 (2010) 071 [arXiv:1005.3348] [SPIRES].

    Article  ADS  Google Scholar 

  16. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [SPIRES].

    MathSciNet  Google Scholar 

  17. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  18. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M.A. Cazalilla, The Luttinger model following a sudden interaction switch-on, Phys. Rev. Lett. 97 (2006) 156403.

    Article  ADS  Google Scholar 

  22. A. Iucci and M.A. Cazalilla, Quantum quench dynamics of some exactly solvable models in one dimension, Phys. Rev. A 80 (2009) 063619 [arXiv:0903.1205].

    ADS  Google Scholar 

  23. A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living Rev. Rel. 7 (2004) 10 [gr-qc/0407042] [SPIRES].

    Google Scholar 

  24. I. Booth, Black hole boundaries, Can. J. Phys. 83 (2005) 1073 [gr-qc/0508107] [SPIRES].

    Article  ADS  Google Scholar 

  25. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/0211074] [SPIRES].

    Article  ADS  Google Scholar 

  27. J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput. 4 (2004) 48 [quant-ph/0304098] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  28. B.-Q. Jin and V.E. Korepin, Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture, J. of Stat. Phys. 116 (2004) 79 [quant-ph/0304108].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. P. Calabrese and J .L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  30. S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P 11003 [arXiv:0808.0116].

  31. P. Calabrese and J .L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [SPIRES].

    Article  ADS  Google Scholar 

  32. P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) 06008 [arXiv:0704. 1880] [SPIRES].

  33. G. De Chiara, S. Montangero, P. Calabrese and R. Fazio, Entanglement entropy dynamics in Heisenberg chains, J. Stat. Mech. (2006) P03001 [cond-mat/0512586] [SPIRES].

  34. J. Eisert and T.J. Osborne, General entanglement scaling laws from time evolution, Phys. Rev. Lett. 97 (2006) 150404 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson bounds and the generation of correlations and topological quantum order, Phys. Rev. Lett. 97 (2006) 050401 [quant-ph/0603121].

    Article  ADS  Google Scholar 

  36. L. Cincio, J. Dziarmaga, M.M. Rams and W.H. Zurek, Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model, Phys. Rev. A 75 (2007) [cond-mat/0701768] [SPIRES].

  37. N. Schuch, M.M. Wolf, K.G.H. Vollbrecht and J.I. Cirac, On entropy growth and the hardness of simulating time evolution, New J. Phys. 10 (2008) 033032 [arXiv:0801.2078].

    Article  ADS  Google Scholar 

  38. V. Eisler and I. Peschel, Entanglement in a periodic quench, Ann. Phys. (Berlin) 17 (2008) 410 [arXiv:0803. 2655].

    Article  MATH  ADS  Google Scholar 

  39. M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev. A 78 (2008) 010306(R) [arXiv:0804.3559].

    ADS  Google Scholar 

  40. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge U.K. (2003) pg. 701.

    Book  MATH  Google Scholar 

  41. S. Furukawa, V. Pasquier and J. Shiraishi, Mutual information and compactification radius in a c=1 critical phase in one dimension, arXiv:0809.5113 [SPIRES].

  42. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES].

  43. V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, arXiv:0910.0706 [SPIRES].

  44. M. Headrick, Entanglement Renyi entropies in holographic theories, arXiv:1006.0047 [SPIRES].

  45. P.C. Vaidya, The external field of a radiating star in general relativity, Curr. Sci. 12 (1943) 183.

    MathSciNet  ADS  Google Scholar 

  46. P.C. Vaidya, The gravitational field of a radiating star, Pro. Indian Acad. A. 33 (1951) 264.

    MATH  MathSciNet  ADS  Google Scholar 

  47. S.W. Hawking and G.F.R. Ellis, The Large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973).

    Book  MATH  Google Scholar 

  48. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  50. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [SPIRES].

    Article  ADS  Google Scholar 

  52. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Cramer, C. M. Dawson, J. Eisert and T.J. Osborne, Exact relaxation in a class of nonequilibrium quantum lattice systems, Phys. Rev. Lett. 100 (2008) 030602 [cond-mat/0703314] [SPIRES].

    Article  ADS  Google Scholar 

  54. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Hydrodynamics and beyond in the strongly coupled N =4 plasma, JHEP 07 (2008) 133 [arXiv:0805.2570] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza López.

Additional information

ArXiv ePrint:1006.4090

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abajo-Arrastia, J., Aparício, J. & López, E. Holographic evolution of entanglement entropy. J. High Energ. Phys. 2010, 149 (2010). https://doi.org/10.1007/JHEP11(2010)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)149

Keywords

Navigation