Skip to main content
Log in

Color-kinematics duality in multi-Regge kinematics and dimensional reduction

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this note we study the applicability of the color-kinematics duality to the scattering of two distinguishable scalar matter particles with gluon emission in QCD, or graviton emission in Einstein gravity. Previous analysis suggested that direct use of the Bern-Carrasco-Johansson double-copy prescription to matter amplitudes does not reproduce the gravitational amplitude in multi-Regge kinematics. This situation, however, can be avoided by extensions to the gauge theory, while maintaning the same Regge limit. Here we present two examples of these extensions: the introduction of a scalar contact interaction and the relaxation of the distinguishability of the scalars. In both cases new diagrams allow for a full reconstruction of the correct Regge limit on the gravitational side. Both modifications correspond to theories obtained by dimensional reduction from higher-dimensional gauge theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel. 5 (2002) 5 [gr-qc/0206071] [INSPIRE].

    MathSciNet  Google Scholar 

  6. H. Kawai, D. Lewellen and S.H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  7. Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Z. Bern, A. De Freitas and H. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Bern, J. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

    ADS  Google Scholar 

  15. J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 super-Yang-Mills theory and N =8 supergravity, Phys. Rev. D 85(2012) 025006 [arXiv:1106.4711][INSPIRE].

    ADS  Google Scholar 

  16. Z. Bern, J. Carrasco, L. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

    ADS  Google Scholar 

  17. R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. Z. Bern, S. Davies, T. Dennen, Y.-T. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, arXiv:1303.6605 [INSPIRE].

  22. Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 supergravity amplitudes from gauge theory at one loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].

    ADS  Google Scholar 

  23. C. Boucher-Veronneau and L. Dixon, N ≥ 4 supergravity amplitudes from gauge theory at two loops, JHEP 12 (2011) 046 [arXiv:1110.1132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Absence of three-loop four-point divergences in N = 4 supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].

    Article  ADS  Google Scholar 

  25. Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure, Phys. Rev. D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].

    ADS  Google Scholar 

  26. Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].

    ADS  Google Scholar 

  27. A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and the Regge limit of inelastic amplitudes, JHEP 04 (2013) 086 [arXiv:1212.5103] [INSPIRE].

    Article  Google Scholar 

  28. J. Bartels, L. Lipatov and A. Sabio Vera, BFKL pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].

    ADS  Google Scholar 

  29. J. Bartels, L. Lipatov and A. Sabio Vera, \( \mathcal{N} \) = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Bartels, L.N. Lipatov and A.S. Vera, Double-logarithms in Einstein-Hilbert gravity and supergravity, arXiv:1208.3423 [INSPIRE].

  31. L. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].

    Google Scholar 

  32. V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    Article  ADS  Google Scholar 

  33. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Erratum ibid. 45 (1977) 199] [Zh. Eksp. Teor. Fiz. 71 (1976)840] [INSPIRE].

    ADS  Google Scholar 

  34. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

    Google Scholar 

  36. L. Lipatov, Effective action for the Regge processes in gravity, Phys. Part. Nucl. 44 (2013) 391 [arXiv:1105.3127] [INSPIRE].

    Article  Google Scholar 

  37. L. Lipatov, Graviton Reggeization, Phys. Lett. B 116 (1982) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  38. L. Lipatov, Multi-Regge processes in gravitation, Sov. Phys. JETP 55 (1982) 582 [Zh. Eksp. Teor. Fiz. 82 (1982) 991] [INSPIRE].

    Google Scholar 

  39. L. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Graviton emission in Einstein-Hilbert gravity, JHEP 03 (2012) 005 [arXiv:1112.4494] [INSPIRE].

    Article  Google Scholar 

  41. O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren (in German), Helv. Phys. Acta 33 (1960) 257.

    MathSciNet  MATH  Google Scholar 

  42. O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II (in German), Helv. Phys. Acta 33 (1960) 347.

    MathSciNet  MATH  Google Scholar 

  43. M. Vazquez-Mozo, A note on supersymmetric Yang-Mills thermodynamics, Phys. Rev. D 60 (1999) 106010 [hep-th/9905030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Á. Vázquez-Mozo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, H., Vera, A.S., Campillo, E.S. et al. Color-kinematics duality in multi-Regge kinematics and dimensional reduction. J. High Energ. Phys. 2013, 215 (2013). https://doi.org/10.1007/JHEP10(2013)215

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)215

Keywords

Navigation