Skip to main content
Log in

A universal inequality for CFT and quantum gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We prove that every unitary two-dimensional conformal field theory (with no extended chiral algebra, and with c, \( \tilde{c} > 1 \)) contains a primary operator with dimension ∆1 that satisfies \( 0 < {\Delta_1} < \frac{{c + \tilde{c}}}{{12}} + 0.473695 \). Translated into gravitational language using the AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation in any theory of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than \( {{1} \left/ {{\left( {4{G_N}} \right)}} \right.} + o\left( {\sqrt {{ - \Lambda }} } \right) \). In the flat-space approximation, this limiting mass is twice that of the lightest BTZ black hole. The derivation applies at finite central charge for the boundary CFT, and does not rely on an asymptotic expansion at large central charge. Neither does our proof rely on any special property of the CFT such as supersymmetry or holomorphic factorization, nor on any bulk interpretation in terms of string theory or semiclassical gravity. Our only assumptions are unitarity and modular invariance of the dual CFT. Our proof demonstrates for the first time that there exists a universal center-of-mass energy beyond which a theory of ”pure” quantum gravity can never consistently be extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Leutwyler, A 2 + 1 Dimensional Model For The Quantum Theory Of Gravity, Nuovo Cim. A 42 (1966) 159.

    Article  ADS  Google Scholar 

  2. E.J. Martinec, Soluble Systems In Quantum Gravity, Phys. Rev. D 30 (1984) 1198 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Ann. Phys. 152 (1984) 220 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Achúcarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [SPIRES].

    ADS  Google Scholar 

  5. E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [SPIRES].

  7. M.R. Gaberdiel, S. Gukov, C.A. Keller, G.W. Moore and H. Ooguri, Extremal N = (2, 2) 2D Conformal Field Theories and Constraints of Modularity, arXiv:0805.4216 [SPIRES].

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  9. G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Ph.D. Thesis, University of Bonn, Bonn Germany (1995), Bonner Math. Schriften 286 (1996) 1 [arXiv:0706.0236].

  10. G. Höhn, Conformal Designs based on Vertex Operator Algebras, math/0701626.

  11. J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. J.L. Cardy, Operator content and modular properties of higher dimensional conformal field theories, Nucl. Phys. B 366 (1991) 403 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. V.G. Kac, Highest weight representations of infinite dimensional Lie algebras, proceedings of International Congress of Mathematicians Helsinki Finland (1978).

  15. V.G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, Lect. Notes Phys. 94 (1979) 441.

    Article  ADS  Google Scholar 

  16. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  18. D. Dorigoni and V.S. Rychkov, Scale Invariance + Unitarity ⇒ Conformal Invariance?, arXiv:0910.1087 [SPIRES].

  19. F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [SPIRES].

    ADS  Google Scholar 

  20. S. Hellerman and C. Schmidt-Colinet, Bounds for State Degeneracies in 2D Conformal Field Theory, arXiv:1007.0756 [SPIRES].

  21. D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [SPIRES].

    ADS  Google Scholar 

  23. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  24. B.L. Feigin and D.B. Fuks, Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114 [SPIRES].

    Article  MathSciNet  Google Scholar 

  25. D. Friedan, S.H. Shenker and Z.-a. Qiu, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Commun. Math. Phys. 107 (1986) 535 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  30. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  32. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. M.R. Gaberdiel, S. Gukov, C.A. Keller, G.W. Moore and H. Ooguri, Extremal N = (2, 2) 2D Conformal Field Theories and Constraints of Modularity, arXiv:0805.4216 [SPIRES].

  34. M.R. Gaberdiel, Constraints on extremal self-dual CFTs, JHEP 11 (2007) 087 [arXiv:0707.4073] [SPIRES].

    ADS  Google Scholar 

  35. C. Vafa, Gas of D-branes and Hagedorn Density of BPS States, Nucl. Phys. B 463 (1996) 415 [hep-th/9511088] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  37. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. P.S. Aspinwall, Enhanced gauge symmetries and K3 surfaces, Phys. Lett. B 357 (1995) 329 [hep-th/9507012] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  39. E. Witten, Some comments on string dynamics, hep-th/9507121 [SPIRES].

  40. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [Erratum ibid 185 (1988) 406] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [SPIRES].

    Article  ADS  Google Scholar 

  42. W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Dabholkar and S. Murthy, Fundamental Superstrings as Holograms, JHEP 02 (2008) 034 [arXiv:0707.3818] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York U.S.A. (1997) [SPIRES].

    Book  MATH  Google Scholar 

  45. A. Ashtekar and M. Varadarajan, A Striking property of the gravitational Hamiltonian, Phys. Rev. D 50 (1994) 4944 [gr-qc/9406040] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  46. J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Kleban, M. Porrati and R. Rabadán, Poincaré recurrences and topological diversity, JHEP 10 (2004) 030 [hep-th/0407192] [SPIRES].

    Article  ADS  Google Scholar 

  49. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Hellerman.

Additional information

ArXiv ePrint: 0902.2790

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellerman, S. A universal inequality for CFT and quantum gravity. J. High Energ. Phys. 2011, 130 (2011). https://doi.org/10.1007/JHEP08(2011)130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)130

Keywords

Navigation