Skip to main content
Log in

Dijet resonances, widths and all that

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96{ }TeV \), Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, G. Aad et al., Search for new physics in the dijet mass distribution using 1 fb −1 of pp collision data at \( \sqrt {s} = 7{ }TeV \) collected by the ATLAS detector, arXiv:1108.6311 [INSPIRE].

  4. CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in pp collisions at \( \sqrt {s} = 1.96{ }TeV \), Phys. Rev. Lett. 106 (2011) 171801 [arXiv:1104.0699] [INSPIRE].

    Article  ADS  Google Scholar 

  5. CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].

    ADS  Google Scholar 

  6. CDF top quark physics public results, http://www-cdf.fnal.gov/physics/new/top/public tprop.html.

  7. D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].

    ADS  Google Scholar 

  8. DØ’s top quark physics results, http://www-d0.fnal.gov/Run2Physics/top/top public web pages/top public.html.

  9. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].

    Article  ADS  Google Scholar 

  11. W.R. Frazer and J.R. Fulco, Effect of a pion-pion scattering resonance on nucleon structure. II, Phys. Rev. 117 (1960) 1609 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Gounaris and J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρe + e , Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    ADS  Google Scholar 

  14. D. Choudhury, R.M. Godbole, R.K. Singh and K. Wagh, Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles, Phys. Lett. B 657 (2007) 69 [arXiv:0705.1499] [INSPIRE].

    ADS  Google Scholar 

  15. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [INSPIRE].

    ADS  Google Scholar 

  17. A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [INSPIRE].

    Article  ADS  Google Scholar 

  18. U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Choudhury, T.M. Tait and C. Wagner, Probing heavy Higgs boson models with a TeV linear collider, Phys. Rev. D 65 (2002) 115007 [hep-ph/0202162] [INSPIRE].

    ADS  Google Scholar 

  20. E. Accomando et al., Interference effects in heavy W -boson searches at the LHC, arXiv:1110.0713 [INSPIRE].

  21. C. Grojean, E. Salvioni and R. Torre, A weakly constrained W at the early LHC, JHEP 07 (2011) 002 [arXiv:1103.2761] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of tt production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\bar{p} \to t\bar{t} \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [INSPIRE].

    ADS  Google Scholar 

  24. D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].

    ADS  Google Scholar 

  25. P.H. Frampton and S.L. Glashow, Chiral color: an alternative to the standard model, Phys. Lett. B 190 (1987) 157 [INSPIRE].

    ADS  Google Scholar 

  26. P.H. Frampton and S.L. Glashow, Unifiable chiral color with natural gim mechanism, Phys. Rev. Lett. 58 (1987) 2168 [INSPIRE].

    Article  ADS  Google Scholar 

  27. F. Cuypers, A.F. Falk and P.H. Frampton, Axigluon mass bound from e + e annihilation, Phys. Lett. B 259 (1991) 173 [INSPIRE].

    ADS  Google Scholar 

  28. F. Cuypers and P. Frampton, Lower bound on axigluon mass from electron positron annihilation, Phys. Rev. Lett. 63 (1989) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Cuypers and P. Frampton, Lower limit on the axigluon mass from Υ decay, Phys. Rev. Lett. 60 (1988) 1237 [INSPIRE].

    Article  ADS  Google Scholar 

  30. A.F. Falk, Axigluon contribution to electron-positron scattering, Phys. Lett. B 230 (1989) 119 [INSPIRE].

    ADS  Google Scholar 

  31. M. Doncheski, H. Grotch and R. Robinett, Axigluons in the Υ system, Phys. Rev. D 38 (1988) 412 [INSPIRE].

    ADS  Google Scholar 

  32. M. Doncheski, H. Grotch and R. Robinett, axigluons and heavy quarkonia, Phys. Lett. B 206 (1988) 137 [INSPIRE].

    ADS  Google Scholar 

  33. M. Doncheski and R. Robinett, Eliminating the low-mass axigluon window, Phys. Rev. D 58 (1998) 097702 [hep-ph/9804226] [INSPIRE].

    ADS  Google Scholar 

  34. J. Bagger, C. Schmidt and S. King, Axigluon production in hadronic collisions, Phys. Rev. D 37 (1988) 1188 [INSPIRE].

    ADS  Google Scholar 

  35. R. Chivukula, A.G. Cohen and E.H. Simmons, New strong interactions at the Tevatron?, Phys. Lett. B 380 (1996) 92 [hep-ph/9603311] [INSPIRE].

    ADS  Google Scholar 

  36. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].

    ADS  Google Scholar 

  37. C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].

    ADS  Google Scholar 

  38. M.B. Popovic and E.H. Simmons, A heavy top quark from flavor universal colorons, Phys. Rev. D 58 (1998) 095007 [hep-ph/9806287] [INSPIRE].

    ADS  Google Scholar 

  39. R. Chivukula, B.A. Dobrescu and J. Terning, Isospin breaking and fine tuning in topcolor assisted technicolor, Phys. Lett. B 353 (1995) 289 [hep-ph/9503203] [INSPIRE].

    ADS  Google Scholar 

  40. E.H. Simmons, Coloron phenomenology, Phys. Rev. D 55 (1997) 1678 [hep-ph/9608269] [INSPIRE].

    ADS  Google Scholar 

  41. I. Bertram and E.H. Simmons, Dijet mass spectrum limits on flavor universal colorons, Phys. Lett. B 443 (1998) 347 [hep-ph/9809472] [INSPIRE].

    ADS  Google Scholar 

  42. CDF collaboration, F. Abe et al., Search for quark compositeness, axigluons and heavy particles using the dijet invariant mass spectrum observed in \( p\bar{p} \) collisions, Phys. Rev. Lett. 71 (1993) 2542 [INSPIRE].

    Article  ADS  Google Scholar 

  43. CDF collaboration, F. Abe et al., Search for new particles decaying to dijets at CDF, Phys. Rev. D 55 (1997) 5263 [hep-ex/9702004] [INSPIRE].

    ADS  Google Scholar 

  44. CDF and D0 collaboration, M.P. Giordani, Search for new particles or gauge bosons decaying into dileptons/dijets at the Tevatron, Eur. Phys. J. C 33 (2004) S785 [INSPIRE].

    Article  Google Scholar 

  45. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  46. A. Pukhov et al., CalcHEP. Version 2.5.6, http://theory.sinp.msu.ru/∼pukhov/calchep.html.

  47. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  49. CDF collaboration, F. Abe et al., Inclusive jet cross section in pp collisions at \( \sqrt {s} = 1.8{ }TeV \), Phys. Rev. Lett. 77 (1996) 438 [hep-ex/9601008] [INSPIRE].

    Article  ADS  Google Scholar 

  50. CDF - Run II collaboration, A. Abulencia et al., Measurement of the Inclusive Jet Cross Section using the k T algorithm in pp collisions at \( \sqrt {s} = 1.96{ }TeV \) with the CDF II detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].

    ADS  Google Scholar 

  51. CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab Tevatron pp collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

    ADS  Google Scholar 

  52. ATLAS and CMS collaboration, M.W. Grunewald, Prospects for Electroweak Measurements at the LHC, arXiv:0810.2611 [INSPIRE].

  53. G. Polesello, private communication.

  54. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7{ }TeV \) measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratishruti Saha.

Additional information

ArXiv ePrint: 1111.1054

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, D., Godbole, R.M. & Saha, P. Dijet resonances, widths and all that. J. High Energ. Phys. 2012, 155 (2012). https://doi.org/10.1007/JHEP01(2012)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)155

Keywords

Navigation