Skip to main content

Production of ethanol from lignocellulosic materials using thermophilic bacteria: Critical evaluation of potential and review

  • Conference paper
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 38))

Abstract

Resource and technological aspects of ethanol production are considered. Conversion of lignocellulosic substrates to ethanol via thermophilic bacteria is then addressed, with particular emphasis on evaluation from an engineering perspective.

The biological conversion of lignocellulosic materials to ethanol is a versatile process which can be used in various applications for replacing or improving petroleum products, treating wastes, or reducing air pollution. Petroleum replacement can be in relation to neat fuels, fuel additives, or raw materials. Waste treatment applications may be either for wastes which require treatment (e.g. municipal solid waste) or wastes which do not (e.g. many forestry and agricultural residues). Biological treatment of solid wastes with concomitant ethanol production may become attractive in that solid wastes represent less expensive substrates than those usually considered for ethanol production. In addition, the potential energetic yield of ethanol production is about twice that of electricity generation, and electricity and ethanol have comparable value per unit energy.

Estimated recoverable oil reserves represent a resource approximately 75 times the current annual consumption on a world-wide basis. However, some countries are in a particularly poor position with regard to petroleum supply and demand. For example the U.S. estimated recoverable oil reserves represent approximately 15 times the current annual consumption. The annual ethanol production potential in the U.S. achievable within 20 years is estimated at 1.3 × 1013 MJ based on a compilation of estimates for the rates of production and availability of various biomass materials. Relative contributions to this potential are: 41 % for wastes, 39 % for energy-devoted forestry, and 19 % for energy-devoted agriculture. Notably only 6% of the total ethanol production potential is derived from corn. Pentose sugars represent 28 % of the total potential with hexose sugars the remainder. Ethanol can displace gasoline at a ratio of about 1∶1.3 on an energetic basis, thus 1.3 × 1013 MJ of ethanol can displace about 1.7 × 1013 MJ of gasoline. The U.S. ethanol production potential of 1.3 × 1013 MJ, or 1.7 × 1013 MJ of displaced gasoline, can be compared to the yearly U.S. consumption of 7.5 × 1013 MJ for energy of all kinds, 2 × 1013 MJ for the transportation sector, and 1.2 × 1013 MJ for gasoline.

Four distinguishing features of thermophilic bacteria for ethanol production in comparison to yeast systems are identified. These include the advantages of pentose utilization and in situ cellulase production and cellulose utilization, and the disadvantages of low ethanol tolerance and low ethanol yield. Many frequently-cited advantages are not considered to be of great significance from an economic viewpoint, including facilitated product recovery and high conversion rates. The economic impacts of the distinguishing features of thermophiles for ethanol production are evaluated relative to a base-case process for ethanol production consisting of pretreated hardwood hydrolysis using Trichoderma reesei cellulase followed by conversion of soluble hexose sugars by yeast and reaction of xylose to furfural. Relative to the base case, the impact of in situ cellulase production and substrate hydrolysis is to lower the ethanol selling cost by 37%, and the impact of pentose utilization is to lower the cost by 23%. These two features together increase the ethanol yield per unit wood substrate by 47% over the base case. The increased cost of ethanol separation at low concentrations appears to be relatively small if energy-efficient processes are used, however such processes have not yet been implemented on a large scale. High ethanol yields must be obtained if thermophilic ethanol production is to be practiced on a significant scale.

Research results pertaining to the distinguishing features of thermophiles for ethanol production are reviewed. Critical research areas are proposed for closing the large gap between the potential of thermophilic bacteria for ethanol production and that which has been experimentally realized to date. These include process-oriented studies utilizing potentially realistic substrates and conditions, and both biological and engineering approaches to increasing ethanol yields.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowling EB, Kirk TK (1976) Biotechnol. Bioeng. Symp. 6: 95

    Google Scholar 

  2. Lamed R, Bayer EA (In press) The cellulosome of Clostridium thermocellum. In: Laskin AI (ed) Advances in applied microbiology. Academic, NY, vol 33

    Google Scholar 

  3. Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. In: Laskin AI (ed) Advances in applied microbiology. Academic, New York, vol 31 p 1

    Google Scholar 

  4. Hartley BS, Payton MA (1983) Biochem. Soc. Symp. 48: 133

    Google Scholar 

  5. Sonnleitner B (1983) Biotechnology of thermophilic bacteria — growth, products and application. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 28 p 69

    Google Scholar 

  6. Sonnleitner B, Fiechter A. (1983) Trends Biotechnol. 1(3): 74

    Google Scholar 

  7. Carreira, LH, Ljungdahl LG (1984) Production of ethanol from biomass using anaerobic thermophilic bacteria. In: Wise DL (ed) Liquid fuel developments (CRC series in biotechnology) CRC, Boca Raton FL

    Google Scholar 

  8. Slapack GE, Russel, I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC, Boca Raton FL

    Google Scholar 

  9. Wiegel J, Ljundahl LG (1986) CRC Crit. Rev. Biotechnol. 3(1): 39

    Google Scholar 

  10. Lovitt, RW, Kim, BH, Shen G-J, Zeikus JG (In press) Solvent production by microorganisms (to be published in CRC Critical Reviews)

    Google Scholar 

  11. Duong T-VC, Johnson EA, Demain AL (1983) Thermophilic anaerobic cellulolytic bacteria. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology. vol 7 p 156 Halsted Press, Hopwood N.Y.

    Google Scholar 

  12. Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial physiology, vol 8 p 237 Academic Press, N.Y.

    Google Scholar 

  13. Wiegel J (1982) Experentia 82: 151

    Google Scholar 

  14. Wang DIC, Averginos GC, Biocic I, Fang SD, Fang HY (1983) Philos. Trans. R. Soc. London B300: 323

    Google Scholar 

  15. Grathwohl M (1982) World energy supply. de Gruyter, Berlin

    Google Scholar 

  16. Vergara W, Pimentel D (1978) A study of the energy potential of fuels from biomass in five countries. In: Energy from biomass and wastes. Symposium, 14–18 May, Washington DC. Available from The Institute, Chicago

    Google Scholar 

  17. Owsley DC, Bloomfield JJ (1985) Chemtech 15(2): 94

    Google Scholar 

  18. Exxon Corporation (1981) World energy outlook. Corporate Planning and Public Affairs Department, New York

    Google Scholar 

  19. National Petroleum News Fatbook Issues, 1984–1987

    Google Scholar 

  20. American Petroleum Institute (1988) Basic petroleum data book — Petroleum Industry Statistics, 8(1), Washington

    Google Scholar 

  21. Mast RF, Dolton GL, Crovelli RA, Powers RB, Charpentier RR, Root DH, Attanasi ED (1988) Estimates of undiscovered recoverable oil and gas resources for the onshore and state offshore areas of the United States. In: USGS Program and Abstract on Mineral and Energy Resources, V.E. McKelvey Forum, Denver CO, Abstract in the U.S. Geolgical Survey Circular 1025

    Google Scholar 

  22. U.S. Department of Energy (1985), National energy policy plan projections. Office of Planning and Analysis; DOE/PE-0029/3

    Google Scholar 

  23. -Chemical marketing reporter. (1960 through 1986) Schnell Publishing, New York

    Google Scholar 

  24. Peterson T Wisconsin forest extension price reviews. Cooperative Extension Program, U.S.D.A., Madison, Wisconsin (April 1981 through November 1986)

    Google Scholar 

  25. Rudderman FK (1980) Pacific northwest production prices employment and trade. In: North-west Forest Industries. Pacific Northwest Forest and Range Experimental Station, Portland OR

    Google Scholar 

  26. Palsson BO, Fathi-Afshar S, Rudd DF, Lightfoot EN (1981) Science 213: 513

    Google Scholar 

  27. Ng, TK, Busche RM, McDonald CC, Hardy RWF (1983) Science 219(4585): 733

    Google Scholar 

  28. Busche RM (1985) Biotech. Prog. 1(3): 165

    Google Scholar 

  29. Hall DO (1979) Fuel 57(6): 322

    Google Scholar 

  30. Ferchak JD, Pye EK (1981) Solar Energy 26: 9

    Google Scholar 

  31. Energy from biological processes, volume II — technical and environmental analyses. Office of Technology Assessment, Congress of the United States, Washington DC (1980)

    Google Scholar 

  32. Humphrey AE, Moreira A, Armiger W, Zabriske D (1977) Biotechnol. Bioeng. Symp. 7: 45

    Google Scholar 

  33. Goldstein IS (1981) Biomass availability and utility for chemicals. In: Goldstein, IS (ed) Organic chemicals from biomass. CRC Press, Boca Raton, FL, p 1

    Google Scholar 

  34. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 27 p 1

    Google Scholar 

  35. Young J, Griffin E, Russell J (1986) Biomass 10: 9

    Google Scholar 

  36. Levinson A (1982) Resource Man. Optim. 2(2): 99

    Google Scholar 

  37. Venkatasubramanian K, Kiem C (1985) Starch and energy: technology and economics of fuel alcohol production. In: van Beynum GMA, Roels JA (eds) Starch conversion technology. Marcel Dekker, New York, p 143

    Google Scholar 

  38. Lipinsky ES (1978) Science 199: 644

    Google Scholar 

  39. Katzen R et al. (1978) Grain motor fuel alcohol technical and economic assessment. Available from NTIS, Springfield VA; HCP/J6639-01

    Google Scholar 

  40. Bellamy WD (1975) Conversion of insoluble agricultural wastes to SCP by thermophilic micro-organisms. In: Tannebaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Carelton, MA p 263

    Google Scholar 

  41. Stephens HR, Heichel GH (1975) Biotechnol. Bioeng. Symp. 5: 27

    Google Scholar 

  42. Gong C-S, Chen LF, Flickinger MC, Tsoa GT (1981) Conversion of hemicellulose carbohydrates. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 20 p 93

    Google Scholar 

  43. Morrison FB (1956) Feeds and feeding — a handbook for the student and stockman. Morrison, Ithaca NY

    Google Scholar 

  44. Tchobanaglous GH, Theisen H, Eliassen R (1977) Solid wastes: engineering principles and management issues. McGraw-Hill, New York

    Google Scholar 

  45. Herman MF, Othmer DF, Overberger CG, Seaborg T (eds) Kirk-Othmer encyclopedia of chemical technology, 3rd edn, Wiley, New York (1978)

    Google Scholar 

  46. Gaines LL, Karpuk M (1987) Fermentation of lignocellulosic feedstocks: product markets and values. In: Klass DL (ed) Energy from biomass and wastes X, Institute of Gas Technology, Chicago

    Google Scholar 

  47. Maiorella BL, Blanch HW, Wilke CR (1983) Proc Biochem. 18(4): 5

    Google Scholar 

  48. Waits ED, Elmore JL (1983) Environ. Int. 9: 325

    Google Scholar 

  49. Loehr RC, Sengupta M (1985) Environ. Sanit. Rev. 16: 1

    Google Scholar 

  50. Badger Engineers Inc. (1984) Economic feasibility study of an acid-based ethanol plant. SERI, Golden, CO; ZX-3-03096-2

    Google Scholar 

  51. Chem Systems Inc. (1984) Economic feasibility study of an enzymatic hydrolysis-based ethanol plant with prehydrolysis pretreatment. SERI, Golden, CO; XX-0-03097-2

    Google Scholar 

  52. Matsuda S, Kubota H (1984) Biomass 4: 161–182

    Google Scholar 

  53. National Research Council, carbon dioxide assessment committee (1983) Changing climate. National Academy Press, Washington, DC

    Google Scholar 

  54. Hileman B (1984) Environ. Sci. Technol. 18(2): 45A

    Google Scholar 

  55. Rinehart S (1988) Stations start selling high-oxygen fuels. Colorado Daily, 94(284): 1

    Google Scholar 

  56. Hacking AJ (1986) Economic aspects of biotechnology. Cambridge studies in biotechnology 3. Cambridge University Press, Cambridge

    Google Scholar 

  57. Murtagh JE (1986) Process Biochem. 21(2): 61

    Google Scholar 

  58. Keim CR (1983) Enzyme Microb. Technol. 5: 103

    Google Scholar 

  59. Esser K, Karsch T (1984) Process Biochem. 19(3): 116

    Google Scholar 

  60. Greek BF (1987) Chem. Eng. News 65(6): 9

    Google Scholar 

  61. Smith N, Corcoran TJ (1981) Wood production energetics: an analysis for fuel applications. In: Klass DL (ed) Biomass as a nonfossil fuel source. ACS, Washington, DC (Symposium series No. 144), p 433

    Google Scholar 

  62. Ferchak JD, Pye EK (1981) Solar Energy 26: 17

    Google Scholar 

  63. Datta R (1981) Process Biochem. 16(4): 16

    Google Scholar 

  64. Wilke CR, Maiorella B, Sciamanna A, Tangnu K, Wiley D, Wong H (1983) Enzymatic hydrolysis of cellulose — theory and applications. Noyes Data Corp, Park Ridge, NJ

    Google Scholar 

  65. Grethlein H (1984) Biotech. Adv. 2: 43

    Google Scholar 

  66. Dale BE (1985) Cellulose pretreatments: technology and techniques. In: Tsoa GT (ed) Annual reports on fermentation processes, vol 8 p 299

    Google Scholar 

  67. Grethlein H (1985) Bio/Technol. 3(2): 155

    Google Scholar 

  68. Weimer PJ, Weston WM (1985) Biotechnol. Bioeng. 27: 1540

    Google Scholar 

  69. Grethlein H, Converse AO (1985) Understanding how pretreatment increases the rate of enzymatic hydrolysis of wood. Presented at: 190th meeting of the ACS

    Google Scholar 

  70. Wright JD, Power AJ, Douglas LJ (1986) Biotechnol. Bioeng. Symp. 17: 285

    Google Scholar 

  71. Allen DC, Grethlein HE, Converse AO (1984) Solar Energy 33(2): 175

    Google Scholar 

  72. Weimer PJ, Chou Y-CT, Weston WM, Chase DB (1986) Biotechnol. Bioeng. Symp. 17: 5

    Google Scholar 

  73. Preprints from: Symposium on the pretreatment of lignocellulosic materials. 23–27 June 1986, Graz, Austria. Forest Research Institute, Rotura, New Zealand

    Google Scholar 

  74. Ladisch MR, Lin KW, Voloch M, Tsoa GT (1983) Enzyme Microb. Technol. 5: 82

    Google Scholar 

  75. Mardsen WL, Gray PP (1986) CRC Crit. Rev. Biotechnol. 3(3): 235

    Google Scholar 

  76. Grethlein HE Acid hydrolysis review. Presented at: Conference on anaerobic digestion and carbohydrate hydrolysis of wastes. 8–10 May 1984, Luxembourg, Commission of the European Communities

    Google Scholar 

  77. Ladisch MR, Tsoa GT (1986) Enzyme Microb. Technol. 8: 66

    Google Scholar 

  78. Wright JD, Power AJ (1987) Comparative technicial evaluation of acid hydrolysis processes for conversion of cellulose to ethanol. In: Klass, DL (ed) Energy from biomass and wastes X. Elsevier, Essex

    Google Scholar 

  79. Smith PC, Grethlein HE, Converse AO (1982) Solar Energy 28(1): 41

    Google Scholar 

  80. Kwarteng K (1983) Kinetics of acid hydrolysis of hardwood in a continuous plug flow reactor. Ph.D. Thesis, Thayer School of Engineering, Hanover, NH

    Google Scholar 

  81. Parker S, Calnon M, Feinberg D, Power A, Weiss L (1983) The value of furfural/ethanol co-production from acid hydrolysis processes. SERI, Golden, CO; TR-231-2000

    Google Scholar 

  82. Esser K, Schmidt U (1982) Process Biochem. 17(3): 46

    Google Scholar 

  83. Faust U, Prave P, Schlingmann M (1983) Process Biochem. 18(3): 31

    Google Scholar 

  84. Guidoboni GE (1984) Enzyme Microb. Technol. 6: 194

    Google Scholar 

  85. Maiorella BL, Blanch HW, Wilke CR (1984) Biotechnol. Bioeng. 26: 1003

    Google Scholar 

  86. Kolot FB (1984) Process Biochem. 19(1): 7

    Google Scholar 

  87. Mulder MHV, Smolders CA (1986) Process Biochem. 21(2): 35

    Google Scholar 

  88. Hoffman H, Scheper T, Schugerl K, Schmidt W (1987) Chem. Eng. J. (Lausanne) 34: B13

    Google Scholar 

  89. Matsumura M, Markl H (1984) Appl. Microbiol. Biotechnol. 20: 371

    Google Scholar 

  90. Crabbe PG, Tse CW, Munro PA (1986) Biotechnol. Bioeng. 28: 939

    Google Scholar 

  91. Cysewski GR, Wilke CR (1977) Biotechnol. Bioeng. 19: 1125

    Google Scholar 

  92. Ghose TK, Roychoudhury PK, Ghose P (1984) Biotechnol. Bioeng. 26: 377

    Google Scholar 

  93. Rogers PL, Lee KJ, Skotnicki ML, Tribe DL (1982) Ethanol production by Zymomonas mobilis In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 23 p 37

    Google Scholar 

  94. Montencourt BS (1985) Zymomonas, a unique genus of bacteria. In: Demain AL, Solomon N (eds) Biology of industrial microorganisms. Cummings, Menlo Park, p 261

    Google Scholar 

  95. Karsch T, Stahl U, Esser K (1983) Eur. J. Appl. Microbiol. Biotechnol. 18: 387

    Google Scholar 

  96. Magee, RJ, Kosaric N (1985) Bioconversion of hemicellulosics. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg, New York, vol 32 p 61

    Google Scholar 

  97. Hartline FF (1979) Science 206: 41

    Google Scholar 

  98. Parkinson G (1981) Chem. Eng. 88(11): 29

    Google Scholar 

  99. Choudhury JP, Ghose P, Guha PK (1985) Biotechnol. Bioeng. 27: 1081

    Google Scholar 

  100. Essien D, Pyle DL (1983) Process Biochem. 18(4): 31

    Google Scholar 

  101. Garg DR, Ausikaitis JP (1983) Chem. Eng. Prog. 79(4): 60

    Google Scholar 

  102. Katzen R, Ackley WR, Moon, GD, Messick JR, Brush BF, Kaupisch KF (1981) Low energy distillation systems. In: Klass DL, Emert GH (eds) Fuels and chemicals from biomass. Ann Arbor Science, Ann Arbor

    Google Scholar 

  103. Busche RM (1984) Biotechnol. Bioeng. Symp. No. 13: 597

    Google Scholar 

  104. Barba D, Brandani V, Di Giacomo G (1985) Chem. Eng. Sci. 50(12): 2287

    Google Scholar 

  105. Schmitt D, Vogelpohl A (1983) Sep. Sci. Technol. 18(6): 547

    Google Scholar 

  106. Lee F-M, Pahl RH (1985) Ind. Eng. Chem. Process Des. Dev. 24: 168

    Google Scholar 

  107. Lynd LR, Grethlein HE (1984) Chem. Eng. Prog. 81: 59

    Google Scholar 

  108. Grethlein HE, Lynd LH (1986) U.S. Patent No. 4, 626, 321

    Google Scholar 

  109. Lynd LR, Grethlein HE (1986) AIChE J. 32(8): 1347

    Google Scholar 

  110. Martin SR (1982) Chem. Eng. NY 377: 50–53

    Google Scholar 

  111. Lyons TP (1983) Proc. Biochem. 18(2): 18

    Google Scholar 

  112. Kampen WH (1980) Hydrocarbon Process. 59(2): 72

    Google Scholar 

  113. Parker HW (1982) Mech. Eng. 104(5): 54

    Google Scholar 

  114. Parisi F (1983) Energy balances for ethanol as a fuel. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 28 p 41

    Google Scholar 

  115. Pimentel LS (1980) Biotechnol. Bioeng. 22: 1989

    Google Scholar 

  116. Rothman H, Greenshields R, Calle FR (1983) The alcohol economy: fuel ethanol and the Brazilian experience. Francis Pinter, London

    Google Scholar 

  117. Sama DA (1981) Hydrocarbon Process. 60(7): 89

    Google Scholar 

  118. Yorifuji T (1981) Energy Dev. Jpn. 3: 195

    Google Scholar 

  119. Johnson MA (1983) Energy 8(3): 225

    Google Scholar 

  120. Krochta JM (1979) Energy analysis for ethanol from biomass. Second international conference on energy use management. Pergamon, New York, p 1956

    Google Scholar 

  121. Cooney CL, Mistry FR (1982) Analysis of direct fermentation of lignocellulose to ethanol. Presented at: 184th meeting of the ACS

    Google Scholar 

  122. Huibers DTA, Jones MW (1980) Can. J. Chem. Eng. 58: 718

    Google Scholar 

  123. Graff GM (1982) Chem. Eng. NY. 89(26): 25

    Google Scholar 

  124. Janshekar H, Fiechter A (1983) Lignin: biosynthesis, application, and biodegradation. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 27 p 119

    Google Scholar 

  125. Clements LD, Beck SR, Heintz C (1983) Chem. Eng. Prog. 79(11): 59

    Google Scholar 

  126. Shah RB, Clausen EC, Gaddy JL (1984) Chem. Eng. Prog. 80(1): 76

    Google Scholar 

  127. Greek BF (1984) Chem. Eng. News 62(11): 17

    Google Scholar 

  128. Zeikus JG, Ben-Bassat ANgTK, Lamed R (1981) Thermophilic ethanol fermentations. In: Hollaender A (ed) Trends in the biology of fermentations for chemicals and fuels. Plenum, New York, p 441

    Google Scholar 

  129. Sonnleitner B, Cometta S, Fiechter A (1982) Biotechnol. Bioeng. 24: 2597

    Google Scholar 

  130. Avgerinos GC, Wang DIC (1983) Biotechnol. Bioeng. 25: 67

    Google Scholar 

  131. Sonnleitner B, Fiechter A, Giovanni F (1984) Appl. Microbiol. Biotechnol. 19: 326

    Google Scholar 

  132. Leschine SB, Canale-Parola E (1983) Appl. Environ. Microbiol. 46(3): 728

    Google Scholar 

  133. Sleat R, Mah RA, Robinson R (1984) Appl. Environ. Microbiol. 48(1): 88

    Google Scholar 

  134. Lawford GR, Lavers BH, Good D, Charley R, Fein J, Lawford HG (1982) Zymomonas ethanol fermentations: biochemistry and bioengineering. Presented at: International symposium on ethanol from biomass, 13–15 Oct 1982, Winnipeg, p 482

    Google Scholar 

  135. Lacis L, Lawford HG (1985) J. Bacteriol. 163(3): 1275

    Google Scholar 

  136. Fardeau M-L, Plasse F, Belaich J-P (1980) European J. Appl. Microbiol. 10: 133

    Google Scholar 

  137. Wiegel J (1982) Experientia 38: 151

    Google Scholar 

  138. Barras F, Boyer MH, Chambost JP, Chippaux M (1984) Mol. Gen. Genet. 197(3): 513

    Google Scholar 

  139. Gilkes NG, Langsford ML, Kilburn DG, Miller RC, Warren RAJ (1984) J. Biol. Chem. 259(16): 10455

    Google Scholar 

  140. Kotoujansky A, Diolez A, Boccara M, Bertheau Y, Andro T, Coleno A (1985) EMBO J. 4(3): 781

    Google Scholar 

  141. Skipper N, Sutherland M, Davies RW, Kilburn D, Miller RC, Warren A, Wong R (1985) Science 230(4728): 958

    Google Scholar 

  142. Shalita FP, Yablonsky MD, Dooley MM, Bucholz, SE, Kahrs SK, Murphy-Holland K, Eveleigh DE (1987) Genetic engineering of bacteria for alcohol fuel production. In: Klass DL (ed) Energy from biomass and wastes X, Elsevier, Essex, p 907

    Google Scholar 

  143. Imanaka T (1986) Application of recombinant DNA technology to the production of useful biomaterials. In: Fiechter A (ed) Advances in biochemical engineering/Biotechnology. Springer, Berlin Heidelberg New York, vol 33 p 1

    Google Scholar 

  144. Guthrie KM (1969) Chem. Eng. NY. 76(6): 114

    Google Scholar 

  145. Peters MS, Timmerhaus KD (1969) Plant design and economics for chemical engineers, 2nd edn, McGraw-Hill, New York

    Google Scholar 

  146. Lynd LR (1987) Production of ethanol from lignocellulosic materials using thermophilic bacteria. DE thesis, Thayer School of Engineering, Hanover, NH

    Google Scholar 

  147. Levy PF, Sanderson JE, Ashare E, Wise, DL, Molyneaux MS (1980) Liquid fuels production from biomass. Report for DOE/SERI contract no. AC02-77ET20050; DOE/ET/20050-T4

    Google Scholar 

  148. Bayer EA, Kenig R, Lamed RL (1983) J. Bacteriol. 156(3): 818

    Google Scholar 

  149. Ljungdahl LG, Pettersson B, Ericksson KE, Wiegel J. (1983) Curr. Microbiol. 9: 195

    Google Scholar 

  150. Ng TK, Zeikus JG (1981) Appl. Environ. Microbiol. 42(2): 231

    Google Scholar 

  151. Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Appl. Environ. Microbiol. 43(5): 1125

    Google Scholar 

  152. Spinnler HE, Lavigne B, Blachere H (1986) Appl. Microbiol. Biotechnol. 23: 434

    Google Scholar 

  153. Johnson EA, Reese, ET, Demain AL (1982) J. Appl. Biochem. 4: 64

    Google Scholar 

  154. Johnson EA, Bouchot F, Demain AL (1985) J. Gen. Microbiol. 131: 2303

    Google Scholar 

  155. Wu D, Demain AL (1986) Abstracts of the annueal meeting of the ASM, p 73

    Google Scholar 

  156. Wu D, Demain AL (1985) Abstracts of the annual meeting of the ASM, p 248

    Google Scholar 

  157. Hon-Nami K, Coughlan MP, Hon-Nami H, Ljungdahl LG (1986) Arch Microbiol. 145: 13

    Google Scholar 

  158. Afeyan N (1987) A mechanistic study of the Clostridium thermocellum cellulase system. PhD Thesis, MIT

    Google Scholar 

  159. Lamed RL, Setter E, Bayer EA (1983) J. Bacteriol. 156(2): 828

    Google Scholar 

  160. Lamed RL, Kenig R, Setter EA (1985) Enzyme Microb. Technol. 7: 37

    Google Scholar 

  161. Coughlan MP, Hon-Nami K, Hon-Nami H, Ljungdahl LG, Paulin JJ, Rigsby WE (1985) Biochem. Biophys. Res. Comm. 130(2): 904

    Google Scholar 

  162. Bisaria VS, Ghose TK (1981) Enzyme Microb. Technol. 3: 90

    Google Scholar 

  163. Lynd LR, Grethlein HE (1987) Biotechnol. Bioeng. 29: 92

    Google Scholar 

  164. Ng TK, Ben-Bassat A, Zeikus JG (1981) Appl. Environ. Microbiol. 41: 1337

    Google Scholar 

  165. Saddler JN, Chan MK-H (1982) Eur. J. Appl. Microbiol. Biotechnol. 16: 99

    Google Scholar 

  166. Kundu S, Ghose TK, Mukhopadhyay SN (1983) Biotechnol. Bioeng. 25: 1109

    Google Scholar 

  167. Khan AW, Asther M, Giuliano C (1984) J. Ferment. Technol. 62(4): 335

    Google Scholar 

  168. Saddler JN, Chan MK-H (1984) Can. J. Microbiol. 30: 2123

    Google Scholar 

  169. No. 141, and Wolkin, Lynd and Grethlein, manuscript in preparation.

    Google Scholar 

  170. Grethlein HE, Allen DC, Converse AO (1984) Biotechnol. Bioeng. 25: 1498

    Google Scholar 

  171. Knappen D, Grethlein HE, Converse A (1981) Biotechnol. Bioeng. Symp. 11: 66

    Google Scholar 

  172. Hon-Nami K, Coughlan MP, Hon-Nami H, Carriera LH, Ljungdahl LG (1985) Biotechnol. Bioeng. Symp. 15: 191

    Google Scholar 

  173. Slaff GF, Humphrey AE (1981) Diauxic growth of C. thermohydrosulfuricum. Presented at: 182nd meeting of the ACS

    Google Scholar 

  174. Carreira LH, Wiegel J, Ljungdahl LG (1983) Biotechnol. Bioeng. Symp. 13: 183

    Google Scholar 

  175. Ng TK, Zeikus JG (1982) J. Bacteriol. 150(3): 1391

    Google Scholar 

  176. Slater GJ, Wakelin WS (1985) Thermophilic ethanol fermentation: an engineering assessment. NTIS, Springfield, VA; PB85-169 142

    Google Scholar 

  177. Herrero AA, Gomez RF (1980) Appl. Environ. Microbiol. 40(3): 571

    Google Scholar 

  178. Lovitt RW, Longin R, Zeikus JG (1984) Appl. Environ. Microbiol. 48(1): 171

    Google Scholar 

  179. Herrero AA, Gomez RF, Roberts MF (1985) J. Biol. Chem. 260(12): 7442

    Google Scholar 

  180. Herrero AA, Gomez RF, Roberts MF (1982) Biochim. Biophys. Acta 693: 195 (1982)

    Google Scholar 

  181. Curatolo W, Kanodia S, Roberts MF (1983) Biochim. Biophys. Acta 734: 336

    Google Scholar 

  182. Herrero-Molina AA (1981) The physiology of Clostridium thermocellum in relation to its energy metabolism. PhD Thesis, MIT, Cambridge

    Google Scholar 

  183. Kim S (1982) Microbial production of ethanol by Clostridium thermosaccharolyticum. MS Thesis. MIT, Cambridge

    Google Scholar 

  184. Mistry FR (1986) Ethanol Production by Clostridium thermosaccharolyticum in a continuous cell recycle system. PhD Thesis, MIT, Cambridge

    Google Scholar 

  185. Sundquist JA, Blanch HW, Wilke CR (1986) Ethanol production with Clostridium thermohydrosulfuricum. Presented at: 192nd meeting of the ACS

    Google Scholar 

  186. van Uden N (1985) Ethanol toxicity and ethanol tolerance in yeasts. In: Tsao G (ed) Annual reports on fermentation processes, vol 8 p 11

    Google Scholar 

  187. Lamed R, Zeikus JG (1980) J. Bacteriol. 144(2): 569

    Google Scholar 

  188. Hyun HH, Shen G-J, Zeikus JG (1985) J. Bacteriol. 164(3): 1153

    Google Scholar 

  189. Thauer RK, Jungermann K, Dekker K (1977) Bacteriol. Rev. 41(1): 100

    Google Scholar 

  190. Mistry FR No. 178, and manuscript submitted for publication

    Google Scholar 

  191. Krebs H (1969) The role of equilibria in the regulation of metabolism. In: Horeker BL, Stadtman ER (eds) Current topics in cellular regulation, Academic, New York, vol 1 p 45

    Google Scholar 

  192. Su T, Lamed R, Lobos J, Brennan M, Smith J, Tabor D, Brooks R (1981) Bioconversion of plant biomass to ethanol. Final report for DOE subcontract no. XR-9-8271-1. SERI, Golden, CO

    Google Scholar 

  193. Weimer PJ, Zeikus JG (1977) Appl. Environ. Microbiol. 33(2): 289

    Google Scholar 

  194. Ben-Bassat A, Lamed R, Zeikus JG (1981) J. Bacteriol. 146: 192

    Google Scholar 

  195. Mistry F, Cooney CL (1985) Ethanol production by Clostridium thermosaccharolyticum in a continuous culture cell-recycle system. Presented at: 190th meeting of the ACS

    Google Scholar 

  196. Ljungdahl LG, Bryant F, Carriera L, Saiki T, Wiegel J (1981) Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms. In: Hollaender A (ed) Trends in the biology of fermentation for chemicals and fuels. Plenum, New York p 397

    Google Scholar 

  197. Zeikus JG, Ben-Bassat A, Hegge P (1980) J. Bacteriol. 143: 432

    Google Scholar 

  198. Ward PJ, Matharasan R (1986) The effect of controlled redox potential on the growth and energetics of Thermoanaerobacter ethanolicus. Presented at: 192nd meeting of the ACS

    Google Scholar 

  199. Wang DIC, Dalai R (1986) U.S. Patent no. 4,568,644

    Google Scholar 

  200. Avgerinos GC (1982) Direct conversion of cellulosic biomass to ethanol by mixed culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Ph.D. Thesis, MIT, Cambridge

    Google Scholar 

  201. Rothstein DM (1986) J. Bacteriol. 165(1): 319

    Google Scholar 

  202. Bailey JE, Ollis DF (1977) Biochemical Engineering Fundamentals. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Lynd, L.R. (1989). Production of ethanol from lignocellulosic materials using thermophilic bacteria: Critical evaluation of potential and review. In: Lignocellulosic Materials. Advances in Biochemical Engineering/Biotechnology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007858

Download citation

  • DOI: https://doi.org/10.1007/BFb0007858

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50163-3

  • Online ISBN: 978-3-540-45940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics