Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 132))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreeva N, Khodorov B, Stelmashook E, Cragoe E Jr, Victorov I (1991) Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 548:322–325

    Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Google Scholar 

  • Ankarcrona M, Dypbukt JM, Orrenius S, Nicotera P (1996) Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett 394:321–324

    Google Scholar 

  • Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260:181–186

    Google Scholar 

  • Bagetta G, Corasaniti T, Berliocchi L, Navarra M, Finazzi-Agrö A, Nisticö G (1995) HIV-1 gp120 produces DNA fragmentation in the cerebral cortex of rat. Biochem Biophys Res Comm 211:130–136

    Google Scholar 

  • Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factor alpha and beta protect neurons aganist amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Soc USA 92:9328–32

    Google Scholar 

  • Beilharz EJ, Williams CE, Dragunow M, Sirimanne ES, Gluckman PD (1995) Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Mol Brain Res 29:1–14

    Google Scholar 

  • Beneviste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Google Scholar 

  • Benfenati F, Valtorta F (1995) Neuroexocytosis. Curr Top Microbiol Immunol 195:195–219

    Google Scholar 

  • Berdichevsky E, Riveros N, Sánchez-Armáss S, Orrego F (1983) Kainate, N-methy-laspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci Lett 36:75–80

    Google Scholar 

  • Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin. A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    Google Scholar 

  • Bindokas VP, Miller RJ (1995) Excitotoxic degeneration is inhibited at non-random sites in cultured rat cerebellar neurons. J Neurosci 15:6999–7011

    Google Scholar 

  • Bonfoco E, Ceccatelli S, Manzo L, Nicotera P (1995a) Colchicine induces apoptosis in cerebellar granule cells. Exp Cell Res 218:189–200

    Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995b) Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with NMDA or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:72162–72166

    Google Scholar 

  • Bonfoco E, Leist M, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1996) Cytoskeletal breakdown and apoptosis elicited by NO-donors in cerebellar granule cells require NMDA-receptor activation. J Neurochem 67:2484–2493

    Google Scholar 

  • Borst JG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434

    Google Scholar 

  • Bortner CD, Oldenburg NBE, Cidlowski JA (1995) The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–26

    Google Scholar 

  • Bouchelouche P, Belhage B, Frandsen A, Drejer J, Schousboe A (1989) Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res 76:281–291

    Google Scholar 

  • Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, Ruff MR, Pert CB (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335:639–642

    Google Scholar 

  • Brorson JR, Manzolillo PA, Miller RJ (1994) Ca-2+ entry via AMPA/kainate receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci 14:187–197

    Google Scholar 

  • Brorson JR, Manzolillo PA, Gibbons SJ, Miller RJ (1995) AMPA-receptor desensitization predicts the selective vulnerability of cerebellar Purkinje cells to excitotoxicity. J Neurosci 15:4515–4524

    Google Scholar 

  • Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347

    Google Scholar 

  • Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316

    Google Scholar 

  • Buchan A, Li H, Pulsinelli WA (1991) The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci 11:1049–1056

    Google Scholar 

  • Budd SL, Nicholls DG (1996a) A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem 66:403–411

    Google Scholar 

  • Budd SL, Nicholls DG (1996b) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291

    Google Scholar 

  • Bührle CP, Sonnhof U (1983) The ionic mechanism of the excitatory action of glutamate upon the membranes of motoneurones of the frog. Pflügers Arch 396:154–162

    Google Scholar 

  • Bullock R (1995) Strategies for neuroprotection with glutamate antagonists. Extrapolating from evidence taken from the first stroke and head injury studies. Ann N Y Acad Sci 765:272–278

    Google Scholar 

  • Bullock R, Zauner A, Myseros JS, Marmarou A, Woodward JJ, Young HF (1995) Evidence for prolonged release of excitatory amino acid in serve human head trauma. Relationship to clinical events. Ann N Y Acad Sci 765:290–297

    Google Scholar 

  • Carafoli E (1991) The Ca2+ pump of the plasma membrane. Physiol Rev 71:129–153

    Google Scholar 

  • Carini R, Bellomo G, Dianzini MU, Albano E (1994) Evidence for a sodium-dependent calcium influx in isolated rat hepatocytes undergoing ATP depletion. Biochem Biophys Res Comm 202:360–366

    Google Scholar 

  • Chard PS, Bleakman D, Savidge JR, Miller RJ (1995) Capsicin-induced neurotoxicity in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases. Neurosci 65:1099–1108

    Google Scholar 

  • Charriaut-Marlangue C, Margaill I, Borrega F, Plotkine M, Ben-Ari Y (1996) NG-Nitro-L-arginine methyl ester reduces necrotic but not apoptotic cell death induced by reversible focal ischemia in rat. Eur J Pharmacol 310:137–140

    Google Scholar 

  • Chen H-SV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427–4436

    Google Scholar 

  • Cheng B, Mattson MP (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostatsis. Neuron 7:1031–1041

    Google Scholar 

  • Cheng B, Mattson MP (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 12:1558–1566

    Google Scholar 

  • Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of clacium homeostasis. Neuron 12:139–153

    Google Scholar 

  • Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379:78–81

    Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297

    Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    Google Scholar 

  • Choi DW (1988a) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Google Scholar 

  • Choi DW (1988b) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Google Scholar 

  • Choi DW (1992) Bench to bedside: the glutamate connection. Science 258:241–243

    Google Scholar 

  • Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182

    Google Scholar 

  • Chou CC, Lam CY, Yung BYM (1995) Intracellular ATP is required for actinomycin D-induced apoptotic cell death in HeLa cells. Cancer Lett 96:181–187

    Google Scholar 

  • Clawson GA, Norbeck LL, Hatem CL, Rhodes C, Amiri P, McKerrow JH, Patierno SR, Fiskum G (1992) Ca2+-regulated serine protease associated with the nuclear scaffold. Cell Growth Differ 3:827–838

    Google Scholar 

  • Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dentritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240:649–653

    Google Scholar 

  • Cooper AJ, Wooller S, Mitchell IJ (1995) Elevated striatal Fos immunoreactivity following 6-hydrodopamine lesioning of the rat is mediated by excitatory amino acid transmission. Neurosci Lett 194:73–76

    Google Scholar 

  • Courtney MJ, Lambert JJ, Nicholls DG (1990) The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. J Neurosci 10:3873–3879

    Google Scholar 

  • Cox JA, Felder CC, Henneberry RC (1990) Differential expression of excitatory amino acid receptor subtypes in cultured cerebellar neurons. Neuron 4:941–947

    Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Google Scholar 

  • Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH (1993) Immunosuppressant FK 506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 90:9808–9812

    Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Synder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13:2651–2661

    Google Scholar 

  • De Erausquin GA, Manev H, Guidotti A, Costa E, Brooker G (1990) Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci USA 87:8017–8021

    Google Scholar 

  • Denk W, Yuste R, Svoboda K, Tank DW (1996) Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol 6:372–378

    Google Scholar 

  • Dienel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neurochem 43:913–925

    Google Scholar 

  • Dowd DR, MacDonald PN, Komm BS, Haussler MR, Miesfeld RL (1992) Stable expression of the calbindin-D28 K complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol Endocrinol 6:1843–1848

    Google Scholar 

  • Drejer J, Beneviste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45:145–151

    Google Scholar 

  • Dreyer EB, Kaiser PK, Offermann JT, Lipton SA (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248:364–367

    Google Scholar 

  • Dubinsky JM (1992) Examination of the role of calcium in neuronal death. Ann NY Acad Sci 679:34–42

    Google Scholar 

  • Dubinsky JM (1993) Intracellular calcium levels during the period of delayed excitotoxicity. J Neurosci 13:623–631

    Google Scholar 

  • Dubinsky JM, Rothman SM (1991) Intracellular calcium concentrations during 〈169〉chemical hypoxia” and excitotoxic neuronal injury. J Neurosci 11:2545–2551

    Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin T-S, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15:6377–6388

    Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin J-P, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70

    Google Scholar 

  • Dumuis A, Sebben M, Fagni L, Prézeau L, Manzoni O, Cragoe EJ Jr, Bockaert J (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells. Mol Pharmacol 43:976–981

    Google Scholar 

  • Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 63:584–591

    Google Scholar 

  • Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228

    Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    Google Scholar 

  • Ehlers MD, Zhang S, Bernhardt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755

    Google Scholar 

  • Eimerl S, Schramm M (1994) The quantity of calcium that appears to induce neuronal death. J Neurochem 62:1223–1226

    Google Scholar 

  • Fesus L, Thomazy V, Falus A (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224:104–108

    Google Scholar 

  • Fleckenstein A (1984) Calcium antagonism: history and prospects for a multifaceted pharmacodynamic principle. In: Opie LH (ed) Calcium antagonists and cardiovascular disease. Raven, New York, pp 9–28

    Google Scholar 

  • Forloni G, Chiesa R, Smiroldo S, Verga L, Salmona M, Tagliavini F, Angeretti N (1993) Apoptosis mediated neurotoxicity induced by chronic application of beta-amyloid fragment 25–35. Neuroreport 4:523–526

    Google Scholar 

  • Frandsen A, Schousboe A (1991) Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56:1075–1078

    Google Scholar 

  • Frandsen A, Drejer J, Schousboe A (1989) Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem 53:297–299

    Google Scholar 

  • Franklin JL, Sanz-Rodriguez C, Juhasz A, Deckwerth TL, Johnson EM Jr (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J Neurosci 15:643–664

    Google Scholar 

  • Furukawa K, Mattson MP (1995) Cytochalasins protect hippocampal neurons against amyloid beta-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx. J Neurochem 65:1061–1068

    Google Scholar 

  • Furukawa K, Barger SW, Blalock EM, Mattson MP (1996) Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 379:74–77

    Google Scholar 

  • Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15:1172–1179

    Google Scholar 

  • Gallo V, Ciotti MT, Coletti A, Aloisi F, Levi G (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci USA 79:7919–7923

    Google Scholar 

  • Garthwaite G, Garthwaite J (1986a) Amino acid neurotoxicity: intracellular sites of calcium accumulation associated with the onset of irreversible damage to rat cerebellar neurones in vitro. Neurosci Lett 71:53–58

    Google Scholar 

  • Garthwaite G, Garthwaite J (1986b) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 66:193–198

    Google Scholar 

  • Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Google Scholar 

  • Gelbard HA, James HJ, Sharer LR, Perry SW, Saito Y, Kazee AM, Blumberg BM, Epstein LG (1995) Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol Appl Neurobiol 21:208–217

    Google Scholar 

  • Ghosh A, Greenberg ME (1995) Calcium signalling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    Google Scholar 

  • Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–1623

    Google Scholar 

  • Gibbons SJ, Brorson JR, Bleakman D, Chard PS, Miller RJ (1993) Calcium influx and neurodegeneration. Ann NY Acad Sci 679:22–33

    Google Scholar 

  • Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5:213–21

    Google Scholar 

  • Gill R, Andiné P, Hillered L, Persson L, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371–379

    Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and circadian clock. Science 260:238–241

    Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596

    Google Scholar 

  • Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128:1–12

    Google Scholar 

  • Gorman AM, Scott MP, Rumsby PC, Meredith C, Griffiths R (1995) Excitatory amino acid-induced cytotoxicity in primary cultures of mouse cerebellar granule cells correlates with elevated, sustained c-fos proto-oncogene expression. Neurosci Lett 191:116–120

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  • Gschwind M, Huber G (1995) Apoptoic cell death induced by beta-amyloid 1–42 peptide is cell type dependent. J Neurochem 65:292–300

    Google Scholar 

  • Gu JG, Albuquerque C, Lee CJ, MacDermott AB (1996) Synaptic strengthening through activation of Ca2+-permeable AMPA-receptors. Nature 381:793–795

    Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    Google Scholar 

  • Gunter TE, Gunter KK, Sheu S, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:C313–C339

    Google Scholar 

  • Hahn JS, Aizenman E, Lipton SA (1988) Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Proc Natl Acad Sci USA 85:6556–6560

    Google Scholar 

  • Hajos F, Garthwaite G, Garthwaite J (1986a) Reversible and irreversible neuronal damage caused by excitatory amino acid analogues in rat cerebellar slices. Neurosci 18:417–436

    Google Scholar 

  • Hajos F, Garthwaite G, Garthwaite J (1986b) Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neurosci 18:437–447

    Google Scholar 

  • Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Google Scholar 

  • Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 63:1987–1990

    Google Scholar 

  • Hartley DM, Choi DW (1989) Delayed rescue of N-methyl-D-aspartate receptor-mediated neuronal injury in cortical culture. J Pharmacol Exp Therap 250:752–758

    Google Scholar 

  • Heinemann U, Pumain R (1980) Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp Brain Res 40:247–250

    Google Scholar 

  • Hernández-Cruz A, Sala F, Adams PR (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science 247:858–862

    Google Scholar 

  • Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Comm 52:504–510

    Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Google Scholar 

  • Holzwarth JA, Gibbons SJ, Brorson JR, Philipson LH, Miller RJ (1994) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J Neurosci 14:1879–1891

    Google Scholar 

  • Huang L-YM, Neher E (1996) Ca2+-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17:135–145

    Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Google Scholar 

  • Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Google Scholar 

  • Ishimaru H, Katoh A, Suzuki H, Fukuta T, Kameyama T, Nabeshima T (1992) Effects of N-methyl-D-aspartate receptor antagonists on carbon monoxide-induced brain damage in mice. J Pharmacol Exp Ther 261:349–352

    Google Scholar 

  • James P, Vorherr T, Carafoli E (1995) Calmodulin-binding domains: just two faced or multi-faceted?. Trends Biochem Sci 20:38–42

    Google Scholar 

  • Johnson BD, Byerly L (1993) A cytoskeletal mechanism for Ca2+channel metabolic dependence and inactivation by intracellular Ca2+. Neuron 10:797–804

    Google Scholar 

  • Johnson EM, Koike T, Franklin J (1992) A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol 115:163–166

    Google Scholar 

  • Johnson EM, Deckwerth TL (1993) Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 16:31–46

    Google Scholar 

  • Kaiser-Petito C, Roberts B (1995) Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146:1121–1130

    Google Scholar 

  • Kass IS, Lipton P (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol 378:313–334

    Google Scholar 

  • Kiedrowski L, Costa E (1995) Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol Pharmacol 47:140–147

    Google Scholar 

  • Kiedrowski L, Brooker G, Costa E, Wroblewski JT (1994) Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron 12:295–300

    Google Scholar 

  • Kluck RM, McDougall CA, Harmon BV, Halliday JW (1994) Calcium chelators induce apoptosis — evidence that raised intracellular ionised calcium is not essential for apoptosis. Biochim Biophys Acta 1223:247–254

    Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 275:1132–1136

    Google Scholar 

  • Koh J-Y, Choi DW (1988) Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. J Neurosci 8:2153–2163

    Google Scholar 

  • Koh J-Y, Peters S, Choi DW (1986) Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 234:73–76

    Google Scholar 

  • Koh J-Y, Suh SW, Gwang BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Google Scholar 

  • Koike T, Martin DP, Johnson EM Jr (1989) Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 86:6421–6425

    Google Scholar 

  • Kristián T, Katsura K-I, Gidö G, Siesjö BK (1994) The influence of pH on cellular calcium influx during ischemia. Brain Res 641:295–302

    Google Scholar 

  • Lafon-Cazal M, Clucasi M, Gaven F, Pietri S, Bockaert J (1993) Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 32:1259–1266

    Google Scholar 

  • Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41

    Google Scholar 

  • Le W-D, Colom LV, Xie W-J, Smith RG, Alexianu M, Appel SH (1995) Cell death induced by beta-amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 686:49–60

    Google Scholar 

  • Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in xenus laevis oocytes. Science 252:123–126

    Google Scholar 

  • Lee KS, Frank S, Vanderklish P, Arai A, Lynch G (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:7233–7237

    Google Scholar 

  • Leist M, Fava E, Montecucco C, Nicotera P (1997a) Peroxynitrite and NO-donors induce neuronal apoptosis by eliciting autocrine excitotoxicity. Eur J Neurosci 9:1488–1498

    Google Scholar 

  • Leist M., Single B, Castoldi AF, Kühnle S, Nicotera P (1997b) Intracellular ATP concentration: a switch deciding between apoptosis and necrosis. J Exp Med 185:1481–1486

    Google Scholar 

  • Leonard JP, Salpeter MM (1979) Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J Cell Biol 82:811–819

    Google Scholar 

  • Levi G, Aloisi F, Ciotti MT, Gallo V (1984) Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res 290:77–86

    Google Scholar 

  • Levi G, Patrizio M, Gallo V (1991) Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures. J Neurochem 56:199–206

    Google Scholar 

  • Li Y, Chopp M, Jiang N, Zaloga C (1995a) In situ detection of DNA fragmentation after focal cerebral ischemia in mice. Mol Brain Res 28:164–168

    Google Scholar 

  • Li Y, Chopp M, Jiang N, Yao F, Zaloga C (1995b) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15:389–397

    Google Scholar 

  • Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C (1995c) Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26:1252–1258

    Google Scholar 

  • Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M (1995d) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 146:1045–1051

    Google Scholar 

  • Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369:235–239

    Google Scholar 

  • Linnik MD, Miller JA, Sprinkle-Cavallo J, Mason PJ, Thompson FY, Montgomery LR, Schroeder KK (1995) Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Mol Brain Res 32:116–124

    Google Scholar 

  • Lipton SA (1992a) Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci 15:75–79

    Google Scholar 

  • Lipton SA (1992b) 7-Chlorokynurenate ameliorates neuronal injury mediated by HIV envelope protein gp120 in rodent retinal cultures. Eur J Neurosci 4:1411–1415

    Google Scholar 

  • Lipton SA (1992c) Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuroreport 3:913–915

    Google Scholar 

  • Lipton SA, Gendelman HE (1995) Dementia associated with the acquired immunodeficiency syndrome. New Engl J Med 332:934–940

    Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 330:613–622

    Google Scholar 

  • Lipton SA, Sucher NJ, Kaiser PK, Dreyer EB (1991) Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 7:111–118

    Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Google Scholar 

  • Lu YM, Yin HZ, Chiang J, Weiss JH (1996) Ca2+-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 16:5457–5465

    Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 58:193–201

    Google Scholar 

  • Maiese K, Swiriduk M, TenBroeke M (1996) Cellular mechanisms of protection by metabotropic glutamate receptors during anoxia and nitric oxide toxicity. J Neurochem 66:2419–2428

    Google Scholar 

  • Malgaroli A, Tsien RW (1992) Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357:134–139

    Google Scholar 

  • Malgaroli A, Milani D, Meldolesi J, Pozzan T (1987) Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J Cell Biol 105:2145–2155

    Google Scholar 

  • Manev H, Favaron M, Guidotti A, Costa E (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106–112

    Google Scholar 

  • Marcaida G, Minana M-D, Grisolía S, Felipo V (1995) Lack of correlation between glutamate-induced depletion of ATP and neuronal death in primary cultures of cerebellum. Brain Res 695:146–150

    Google Scholar 

  • Marcaida G, Kosenko E, Minana M-D, Grisolía S, Felipo V (1996) Glutamate induces a calcineurin-mediated dephosphorylation of Na+, K+-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 66:99–104

    Google Scholar 

  • Marciani MG, Louvel J, Heinemann U (1982) Aspartate-induced changes in extracellular free calcium in in vitro hippocampal slices of rats. Brain Res 238:272–277

    Google Scholar 

  • Marin P, Quignard J-F, Lafon-Cazal M, Bockaert J (1993) Non-classical glutamate receptors, blocked by both NMDA and non-NMDA antagonists, stimulate nitric oxide production in neurons. Neuropharmacol 32:29–36

    Google Scholar 

  • Mattson MP (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 2:105–117

    Google Scholar 

  • Mattson MP, Guthrie PB, Kater SB (1989a) A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J 3:2519–2526

    Google Scholar 

  • Mattson MP, Guthrie PB, Hayes BC, Kater SB (1989b) Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9:1223–1232

    Google Scholar 

  • Mattson MP, Rychlik B, Chu C, Christakos S (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein Calbindin-D28k in cultured hippocampal neurons. Neuron 6:41–51

    Google Scholar 

  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12:376–389

    Google Scholar 

  • Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK (1993a) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 13:4575–4588

    Google Scholar 

  • Mattson MP, Tomaselli KJ, Rydel RE (1993b) Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res 621:35–49

    Google Scholar 

  • Mattson MP, Zhang Y, Bose S (1993c) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol 121:1–13

    Google Scholar 

  • Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintowsky VL, Rydel RE (1993d) Beta-amyloid protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease. Trends Neurosci. 16:409–414

    Google Scholar 

  • Mattson MP, Rydel RE, Lieberburg I, Smith-Swintosky VL (1993e) Altered calcium signaling and neuronal injury: stroke and Alzheimer's disease as examples. Ann N Y Acad Sci 679:1–21

    Google Scholar 

  • Mattson MP, Chen B, Smith-Swintosky VL (1993f) Neurotrophic factor mediated protection from excitotoxicity and disturbances in calcium and free radical metabolism. Sem Neurosci 5:295–307

    Google Scholar 

  • Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993g) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10:243–254

    Google Scholar 

  • Mattson MP, Barger SW, Begley JG, Mark RJ (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Meth Cell Biol 46:187–216

    Google Scholar 

  • Meffert MK, Premack BA, Schulman H (1994) Nitric oxide stimulates calcium-independent synaptic vesicle release. Neuron 12:1235–1244

    Google Scholar 

  • Meffert MK, Calakos NC, Scheller RH, Schulman H (1966) Nitric oxide modulates synaptic vesicle docking/fusion reactions. Neuron 16:1229–1236

    Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11:379–387

    Google Scholar 

  • Melino G, Annicchiarico-Petruzzelli M, Piredda L, Candi E, Gentile V, Davies PJA, Piacentini M (1994) Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells. Mol Cell Biol 14:6584–6596

    Google Scholar 

  • Michaels RL, Rothman SM (1990) Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci 10:283–292

    Google Scholar 

  • Milani D, Guidolin D, Facci L, Pozzan T, Buso M, Leon A, Skaper SD (1991) Excitatory amino acid-induced alterations of cytoplasmic free Ca2+ in individual cerebellar granule neurons: role in neurotoxicity. J Neurosci Res 28:434–441

    Google Scholar 

  • Miljanich GP, Ramachandran J (1995) Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 35:707–734

    Google Scholar 

  • Mills JC, Nelson D, Erecinska M, Pittman RN (1995) Metabolic and energetic changes during apoptosis in neural cells. J Neurochem 65:1721–1730

    Google Scholar 

  • Mitchell IJ, Lawson S, Moser B, Laidlaw SM, Cooper AJ, Walkinshaw G, Waters CM (1994) Glutamate-induced apoptosis results in a loss of striatal neurons in the parkinsonian rat. Neurosci 63:1–5

    Google Scholar 

  • Mogensen HS, Hack N, Balázs R, Jorgensen OS (1994) The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration. Int J Devl Neurosci 12:451–460

    Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992a) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Google Scholar 

  • Monyer H, Giffard RG, Hartley DM, Dugan LL, Goldberg, MP, Choi DW (1992b) Oxygen or glucose deprivation-induced neuronal injury in cortical cell cultures is reduced by tetanus toxin. Neuron 8:967–973

    Google Scholar 

  • Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322:552–555

    Google Scholar 

  • Mukhin A, Fan L, Faden AI (1996) Activation of metabotropic glutamate receptors subtype mGluR1 contributes to post-traumatic neuronal injury. J Neurosci 16:6012–6020

    Google Scholar 

  • Müller WEG, Schröder HC, Ushijima H, Dapper J, Bormann J (1992) gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine. Eur J Pharmacol 226:209–214

    Google Scholar 

  • Müller WEG, Ushijima H, Schröder HC, Forrest JMS, Schatton WFH, Rytik PG, Heffner-Lauc M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol 246:261–267

    Google Scholar 

  • Murphy SN, Miller RJ (1989a) Regulation of Ca2+ influx intro strital neurons by kainic acid. J Pharmacol Exp Ther 249:184–193

    Google Scholar 

  • Murphy SN, Miller RJ (1989b) Two distinct quisqualate receptors regulate Ca2+ homeostasts in hippocampal neurons in vitro. Mol Pharmacol 35:671–680

    Google Scholar 

  • Murphy SN, Thayer SA, Miller RJ (1987) The effects of excitatory amino acid on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci 7:4145–4158

    Google Scholar 

  • Myseros JS, Bullock R (1995) The rationale for glutamate antagonists in the treatment of traumatic brain injury. Ann N Y Acad Sci 765:262–271

    Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    Google Scholar 

  • Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in xenopus egg extracts: inhibition by bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364

    Google Scholar 

  • Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Google Scholar 

  • Nicotera P, Rossi A (1993) Molecular mechanisms of metal neurotoxicity. J Trace Elem Electrolytes Health Dis 7:254–256

    Google Scholar 

  • Nicotera P, McConkey DJ, Jones DP, Orrenius S (1989) ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 86:453–457

    Google Scholar 

  • Nicotera P, Orrenius S, Nilsson T, Berggren P-O (1990) An inositol 1,4,5-triphosphate-sensitive Ca2+ pool in liver nuclei. Proc Natl Acad Sci USA 87:6858–6862

    Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470

    Google Scholar 

  • Nocotera P, Zhivotovsky B, Orrenius S (1994) Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 16:279–288

    Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Google Scholar 

  • Nuccitelli R (ed) (1994) A practical guide to the study of calcium in living cells. (Methods in cell biology, vol 40) Academic, San Diego

    Google Scholar 

  • Olney JW (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28:455–474

    Google Scholar 

  • O'Malley DM (1994) Calcium permeability of the neuronal nuclear envelope: evaluation using confocal volumes and intracellular perfusion. J Neurosci 14:5741–5758

    Google Scholar 

  • Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 10:281–285

    Google Scholar 

  • Orrenius S, Burkitt MJ, Kass GEN, Dypbukt JM, Nicotera P (1992) Calcium ions and oxidative injury. Ann Neurol 32:S33–S42

    Google Scholar 

  • Palaiologos G, Hertz L, Schousboe A (1989) Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem Res 14:35996366

    Google Scholar 

  • Pastuszko A, Wilson DF (1985) Kainate-induced uptake of calcium by synaptosomes from rat brain. FEBS Lett 192:61–65

    Google Scholar 

  • Piacentini M, Annicchiarico-Petruzzelli M, Oliverio S, Piredda L, Biedler JL, Melino G (1992) Phenotype-specific “tissue” transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 52:271–278

    Google Scholar 

  • Piani D, Fontana A (1994) Involvement of the cystine transport system xc-in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152:3578–3585

    Google Scholar 

  • Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687

    Google Scholar 

  • Pizzi M, Consolandi O, Memo M, Spano P (1996) Activation of multiple metabotropic glutamate receptor subtypes prevents NMDA-induced excitotoxicity in rat hippocampal slices. Eur J Neurosci 8:1516–1521

    Google Scholar 

  • Pollard H, Charriaut-Marlangue C, Centagrel A, Represa A, Robain O, Moreau J, Ben-Ari Y (1994) Kainate-induced apoptotic cell death in hippocampal neurons. Neurosci 63:7–18

    Google Scholar 

  • Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15:3775–3787

    Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    Google Scholar 

  • Prusiner SB (1996) Human prion diseases and neurodegeneration. Curr Top Microbiol Immunol 207:1–17

    Google Scholar 

  • Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakade AR (1991) Stimulated rise in neuronal calcium is faster and greater in the nucleus than the cytosol. FASEB J 5:217–222

    Google Scholar 

  • Randall RD, Thayer SA (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12:1882–1895

    Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    Google Scholar 

  • Rego AC, Santos MS, Oliveira CR (1996) Oxidative stress, hypoxia, and ischemia-like conditions increase the release of endogenous amino acids by distinct mechanisms in cultured retinal cells. J Neurochem 66:2506–2516

    Google Scholar 

  • Reuter H (1995) Measurements of exocytosis from single presynaptic nerve terminals reveal heterogenous inhibition by Ca2+-channel blockers. Neuron 14:773–779

    Google Scholar 

  • Reuter H, Porzig H (1995) Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15:1077–1084

    Google Scholar 

  • Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptors activation. J Neurosci 15:3318–3327

    Google Scholar 

  • Richter C, Gogvadze V, Schlapbach R, Schweizer M, Schlegel J (1994) Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem Biophys Res Commun 205:1143–1150

    Google Scholar 

  • Rizzuto R, Brini M, Bastianutto C, Marsault R, Pozzan T (1995) Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells. Methods Enzymol 260:417–428

    Google Scholar 

  • Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10:805–814

    Google Scholar 

  • Rossi AD, Larsson O, Manzo L, Orrenius S, Vather M, Berggren P-O, Nicotera P (1993) Modification of Ca2+ signaling by inorganic mercury in PC12 cells. FASEB J 7:1507–1514

    Google Scholar 

  • Rossi AD, Viviani B, Zhivotovsky B, Manzo L, Orrenius S, Vahter M, Nicotera P (1997) Inorganic mercury modifies calcium-2+ signalling, triggers apoptosis and potentiates NMDA toxicity in neural cells. Cell Death Differ 4:317–324

    Google Scholar 

  • Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536–537

    Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    Google Scholar 

  • Rothman SM, Olney JW (1995) Excitotoxicity and the NMDA receptor — still lethal after eight years. Trends Neurosci 18:57–58

    Google Scholar 

  • Rothman SM, Thurston JH, Hauhart RE (1987) Delayed neurotoxicity of excitatory amino acids in vitro. Neurosci 22:471–480

    Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl PW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:576–586

    Google Scholar 

  • Rutter GA, Theler JM, Murgia M, Wollheim CB, Pozzan T, Rizzuto R (1993) Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem 268:22385–22390

    Google Scholar 

  • Saido TC, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 8:814–822

    Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death. Science 206:700–702

    Google Scholar 

  • Schiavo G, Poulain B, Benfenati F, DasGupta BR, Montecucco C (1993) Novel targets and catalytic activities of bacterial protein toxins. Trends Microbiol 1:170–174

    Google Scholar 

  • Schiavo G, Rossetto O, Tonello F, Montecucco C (1995) Intracellular targets and metalloprotease activity of tetanus and botulism neurotoxins. Curr Top Microbiol Immunol 195:257–274

    Google Scholar 

  • Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16:6125–133

    Google Scholar 

  • Schultz JB, Huang PL, Matthews RT, Passov D, Fishman MC, Beal MF (1996) Striatal malonate lesions are attenuated in neuronal nitric oxide synthase knockout mice. J Neurochem 67:430–433

    Google Scholar 

  • Scorziello A, Meucci O, Florio T, Fattore M, Forloni G, Salmona M, Schettini G (1996) beta25–35 alters calcium homostasis and induces neurotoxicity in cerebellar granule cells. J Neurochem 66:1995–2003

    Google Scholar 

  • Seeburg PH (1993) The TINS/TiPS lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365

    Google Scholar 

  • Sharkey J, Butcher SP (1994) Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371:336–339

    Google Scholar 

  • Sheardown MJ, Nielsen EO, Hansen EJ, Jacobsen P, Honoré T (1990) 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a new neuroprotectant for cerebral ischemia. Science 247:571–574

    Google Scholar 

  • Shelanski ML (1990) Intracellular ionic calcium and the cytoskeleton in living cells. Ann N Y Acad Sci 568:121–124

    Google Scholar 

  • Sheng Z-H, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–455

    Google Scholar 

  • Shibasaki F, Price ER, Milan D, McKeon F (1996) Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 382:370–373

    Google Scholar 

  • Shimizu S, Eguchi Y, Kamiike W, Itoh Y, Hasegawa J, Yamabe K, Otsuki Y, Matsuda H, Tsujimoto Y (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-xL. Cancer Res 56:2161–2166

    Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    Google Scholar 

  • Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    Google Scholar 

  • Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984a) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    Google Scholar 

  • Simon RP, Griffiths T, Evan MC, Swan JH, Meldrum BS (1984b) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopic study in the rat. J Cereb Blood Flow Metab 4:350–361

    Google Scholar 

  • Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr (1995) Evidence for apoptotic cell death in Alzheimer's disease. Exp Neurol 133:225–230

    Google Scholar 

  • Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Miao GG, Schilling K, Robertson LM, Curran T, Morgan JI (1993) Continuous c-fos expression precedes programmmed cell death in vivo. Nature 363:166–169

    Google Scholar 

  • Snyder SH, Sabatini DM (1995) Immunophilins and the nervous system. Nature Med 1:32–37

    Google Scholar 

  • Stehno-Bittel L, Perez-Terzic C, Clapham DE (1995) Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270:1835–1838

    Google Scholar 

  • Sucher NJ, Lei SZ, Lipton SA (1991a) Calcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglion cells in culture. Brain Res 297:297–302

    Google Scholar 

  • Sucher NJ, Aizenman E, Lipton SA (1991b) N-Methyl-D-aspartate antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro. J Neurosci 11:966–971

    Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dentritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    Google Scholar 

  • Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383:837–840

    Google Scholar 

  • Tingley WG, Roche KW, Thompson AK, Huganir RL (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364:70–73

    Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Google Scholar 

  • Tong G, Shepherd D, Jahr CE (1995) Synaptic desensitization of NMDA receptors by calcineurin. Science 267:1510–1512

    Google Scholar 

  • Traystman RJ, Kirsch JR, Koehler RC (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71:1185–1195

    Google Scholar 

  • Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    Google Scholar 

  • Turski L, Bressler K, Retting K-J, Löschmann P-A, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349:414–418

    Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1993a) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104

    Google Scholar 

  • Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, Tator CH, Charlton MP (1993b) Cell-permanent Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11:221–235

    Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1994) Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro. J Neurophysiol 12:1973–1992

    Google Scholar 

  • Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R, Miljanich G, Ramachandran J (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 90:7894–7897

    Google Scholar 

  • Van Vlient BJ, Sebben M, Dumuis A, Gabrion J, Bockaert J, Pin J-P (1989) Endogenous amino acid release from cultured cerebellar neuronal cells: effect of tetanus toxin on glutamate release. J Neurochem 52:1229–1239

    Google Scholar 

  • Verkhratsky A, Shmigol A (1996) Calcium-induced calcium release in neurons. Cell Calcium 19:1–14

    Google Scholar 

  • Vilbulsreth S, Hefti F, Ginsberg MD, Dietrich WD, Busto P (1987) Astrocytes protect cultured neurons from degeneration induced by anoxia. Brain Res 422:303–311

    Google Scholar 

  • Viviani B, Rossi AD, Chow SC, Nicotera P (1995) Organotin compounds induce calcium overload and apoptosis in PC12 cells. Neurotoxicology 16:19–26

    Google Scholar 

  • Viviani B, Rossi AD, Chow SC, Nicotera P (1996) Triethyltin interferes with Ca2+ signaling and potentiates norepinephrine release in PC12 cells. Toxicol Appl Pharmacol 140:289–295

    Google Scholar 

  • Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagni G (1992) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 59:600–606

    Google Scholar 

  • Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ (1993) Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischemia infarctions. Nature 363:260–263

    Google Scholar 

  • Wang KKW, Yuen P-W (1997) Development and therapeutic potential of calpain inhibitors. Adv Pharmacol 37:117–153

    Google Scholar 

  • Wang YT, Salter MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369:233–235

    Google Scholar 

  • Wei H, Perry DC (1996) Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem 67:2390–2398

    Google Scholar 

  • White RJ, Reynolds IJ (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15:1318–1328

    Google Scholar 

  • White RJ, Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 16:5688–5697

    Google Scholar 

  • Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230:681–683

    Google Scholar 

  • Wroblewski JT, Nicoletti F, Costa E (1985) Different coupling of excitatory amino acid receptors with Ca2+ channels in primary cultures of cerebellar granule cells. Neuropharmacology 24:919–921

    Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Google Scholar 

  • Xia Z, Dudek H, Miranti CK, Greenberg ME (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 16:5425–5436

    Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Google Scholar 

  • Yuzaki M, Forrest D, Curran T, Connor JA (1996) Selective activation of calcium permeability by aspartate in Purkinje cells. Science 273:1112–1122

    Google Scholar 

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gömez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Leist, M., Nicotera, P. (1998). Calcium and neuronal death. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 132. Reviews of Physiology, Biochemistry and Pharmacology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004986

Download citation

  • DOI: https://doi.org/10.1007/BFb0004986

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63492-8

  • Online ISBN: 978-3-540-69581-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics