Skip to main content
Log in

The use of ultrasound in the assessment of bone status

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The assessment of skeletal status has wide clinical applications, especially in the management of osteoporosis. Osteoporosis, once thought of as an unpreventable and untreatable aging process, has revealed many of its secrets over the last decade, and the advent of successful drug therapy has changed our perception of the disease. Non-invasive techniques play a fundamental role in the diagnosis of osteoporosis and in the assessment of the efficacy of drug treatments. The primary technique used in osteoporosis is dual X-ray absorptiometry (DXA), that has been established as a reliable means of measuring bone density. Quantitative ultrasound (QUS), because of the relative portability of the equipment, ease of use, lack of ionizing radiation and low cost, has great potential for widespread use. Five devices for QUS assessment have recently been approved by the Food and Drug Administration and many more applications are in progress. QUS is a relatively new technology, at least in its application to bone fragility. Nevertheless, QUS has demonstrated that it is able to detect bone fragility as well as DXA. However, diagnosis of osteoporosis by QUS remains contentious, but the problems are due more to the limitations of the present T-scores rather than to the technique. A better option for QUS would be to report results in terms of remaining lifetime fracture risk, keeping in mind that a risk estimate needs not only the QUS or DXA measurement, but also the specific data, such as age, weight, gender, hormonal status and fracture history of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous. Consensus Development Conference on Osteoporosis: Diagnosis, prophylaxis and treatment of osteoporosis. Am. J. Med. 1993, 95: 5 (A).

    Google Scholar 

  2. Wu C., Gluer C.C., Lu Y., Hans D., Genant H.K. Ultrasound characterization of bone demineralization. Calcif. Tissue Int. 1998, 62: 133–139.

    Article  CAS  PubMed  Google Scholar 

  3. Njeh C.F., Fuerst T., Diessel E., Genant H.K. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos. Int. 2001, 12: 1–15.

    CAS  Google Scholar 

  4. Gluer C.C., Wu C.Y., Genant H.K. Broadband ultrasound attenuation signals depend on trabecular orientation: an in-vitro study. Osteoporos. Int. 1993, 3: 185–191.

    Article  CAS  PubMed  Google Scholar 

  5. Hans D., Arlot M.E., Schott A.M., Roux J.P., Kotzki P.O., Meunier P.J. Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass? A two-dimensional histomorphometric study. Bone 1995, 16: 295–300.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson P., Muller R., Lowet G. et al. Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone. Bone 1998, 23: 425–431.

    Article  CAS  PubMed  Google Scholar 

  7. Hans D., Wu C., Njeh C.F., et al. Ultrasound velocity of trabecolar cubes reflects mainly bone density and elasticity. Calcif. Tissue Int. 1999, 64: 18–23.

    Article  CAS  PubMed  Google Scholar 

  8. Van den Bergh J.P.W., Lenthe G.H., Hermus A.R.M.M., Corstens F.H.M., Smals A.G.H., Huiskes R. Speed of sound reflects Young’s modulus as assessed by microstructural finite element analysis. Bone 2000, 26: 519–524.

    Article  PubMed  Google Scholar 

  9. De Terlizzi F., Battista S., Cavani F., Canè V., Cadossi R. Influence of bone tissue density and elasticity on ultrasound propagation: an in vitro study. J. Bone Miner. Res. 2000, 15: 2458–2466.

    Article  PubMed  Google Scholar 

  10. Wu C., Hans D., He Y., et al. Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 2000, 26: 529–533.

    Article  CAS  PubMed  Google Scholar 

  11. Greenspan S.L., Bouxein M.L., Melton M.E., et al. Precision and discriminatory ability of calcaneal bone assessment technologies. J. Bone Miner. Res. 1997, 12: 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  12. Pluskiewicz W., Drozdowska B. Ultrasound measurements at the calcaneus in men: differences between healthy and fractured persons and the influence of age and anthropometric features on ultrasound parameters. Osteoporos. Int. 1999, 10: 47–51.

    Article  CAS  PubMed  Google Scholar 

  13. Frost M.L., Blake G.M., Fogelman I. Contact quantitative ultrasound: an evaluation of precision, fracture discrimination, age-related bone loss and applicability of the WHO criteria. Osteoporos. Int. 1999, 10: 441–449.

    Article  CAS  PubMed  Google Scholar 

  14. Sahota O., San P., Cawte S.A., Pearson D., Hosking D.J. A comparison of the longitudinal changes in quantitative ultrasound with dual-energy x-ray absorptiometry: the fouryear effects of hormone replacement therapy. Osteoporos. Int. 2000, 11: 52–58.

    Article  CAS  PubMed  Google Scholar 

  15. Gonnelli S., Cepollaro C., Pondrelli C., Martini, Rossi B., Gennari C. Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporos. Int. 1996, 6: 303–307.

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y., Gluer C.C. Statistical tools in quantitative ultrasound applications. In: Njeh C.F., Hans D., Fuerst T., Gluer C.C., Genant H.K. (Eds.), Quantitative ultrasound. Assessment of osteoporosis and bone status. Martin Dunitz Ltd., London 1999, pp. 77–100.

    Google Scholar 

  17. Chappard C., Camus E., Lefebvre F., et al. Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J. Clin. Densitom. 2000, 3: 121–131.

    Article  CAS  PubMed  Google Scholar 

  18. Chappard C., Berger G., Roux C., Laugier P. Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos. Int. 1999, 9: 318–326.

    Article  CAS  PubMed  Google Scholar 

  19. Iki M., Kajita E., Mitamura S., Nishino H., Yamagami T., Nagahama N. Precision of quantitative ultrasound measurement of the heel bone and effects of ambient temperature on the parameters. Osteoporos. Int. 1999, 10: 462–467.

    Article  CAS  PubMed  Google Scholar 

  20. Gonnelli S., Cepollaro C., Agnusdei D., Palmieri R., Rossi S., Gennari C. Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporos. Int. 1995, 5: 413–418.

    Article  CAS  PubMed  Google Scholar 

  21. Gluer C.C., for the International Quantitative Ultrasound Consensus Group. Quantitative ultrasound technique for the assessment of osteoporosis: expert agreement on current status. J. Bone Miner. Res. 1997, 12: 1280–1288.

    Article  CAS  PubMed  Google Scholar 

  22. Gluer C.C., Hans D. How to use ultrasound for risk assessment: a need for defining strategies. Osteoporos. Int. 1999, 9: 193–195.

    Article  CAS  PubMed  Google Scholar 

  23. Cepollaro C., Agnusdei D., Gonnelli S., Martini S., Borracelli D., Palmieri R., et al. Ultrasonographic assessment of bone in normal Italian males and females. BJR 1995, 68: 910–914.

    Article  CAS  PubMed  Google Scholar 

  24. Landin-Wilhelmsen K., Johansson S., Rosengren A., et al. Calcaneal ultrasound measurements are determined by age and physical activity. Studies in two Swedish random population samples. J. Intern. Med. 2000, 247: 269–278.

    Article  CAS  PubMed  Google Scholar 

  25. Wuster C., Albanese C., De Aloysio D., et al., and the Phalangeal Osteosonogrammetry Study Group. Phalangeal osteosonogrammometry study: age-related changes, diagnostic sensitivity, and discrimination power. J. Bone Miner. Res. 2000, 15: 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  26. Montagnani A., Gonnelli S., Cepollaro C., et al. Quantitative ultrasound at the phalanxes in healthy Italian men. Osteoporos. Int. 2000, 11: 499–504.

    Article  CAS  PubMed  Google Scholar 

  27. Weiss M., Ben-Shlomo A., Ish-Shalom S. Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius. Osteoporos. Int. 2000, 11: 411–416.

    Article  CAS  PubMed  Google Scholar 

  28. Lappe J.M., Stegman M.R., Davies K.M., Barber S., Recker R.R. A prospective study of quantitative ultrasound in children and adolescents. J. Clin. Densitom. 2000, 3: 167–175.

    Article  CAS  PubMed  Google Scholar 

  29. Howard G.M., Nguyen T.V., Harris M., Kelly P.J., Eisman J.A. Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J. Bone Miner. Res. 1998, 8: 1318–1327.

    Article  Google Scholar 

  30. Danielson M.E., Cauley J.A., Baker C.E., et al. Familial resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: the BMD in mothers and daughters study. J. Bone Miner. Res. 1999, 14: 102–110.

    Article  CAS  PubMed  Google Scholar 

  31. Gregg E.W., Kriska A.M., Salamone L.M., et al. Correlates of quantitative ultrasound in the women’s healthy lifestyle project. Osteoporos. Int. 1999, 10: 416–424.

    Article  CAS  PubMed  Google Scholar 

  32. Jakes R.W., Khaw K.T., Day N.E., et al. Patterns of physical activity and ultrasound attenuation by heel bone among Norfolk cohort of European Perspective Investigation of Cancer (EPIC Norfolk): population based study. B.M.J. 2001, 322: 140–143.

    Article  CAS  Google Scholar 

  33. Hans D., Dargent-Molina P., Schott A.M., et al., for the EPIDOS Prospective Study Group. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996, 348: 511–514.

    Article  CAS  PubMed  Google Scholar 

  34. Bauer D.C., Gluer C.C., Cauley J.A., et al., for the Study of Osteoporotic Fractures Research Group. Arch. Intern. Med. 1997, 157: 629–634.

    Article  CAS  PubMed  Google Scholar 

  35. Cepollaro C., Gonnelli S., Pondrelli C., et al. The combined use of ultrasound and densitometry in the prediction of vertebral fracture. Br. J. Radiol. 1997, 70: 691–696.

    CAS  PubMed  Google Scholar 

  36. Dargent-Molina P., Schott A.M., Hans D., et al., for the EPIDOS study. Separate and combined value of bone mass and gait speed measurements in screening for hip fracture risk: results from the EPIDOS study. Osteoporos. Int. 1999, 9: 188–192.

    Article  CAS  PubMed  Google Scholar 

  37. Gnudi S., Ripamonti C., Malavolta N. Quantitative ultrasound and bone densitometry to evaluate the risk of nonspine fractures: a prospective study. Osteoporos. Int. 2000, 11: 518–523.

    Article  CAS  PubMed  Google Scholar 

  38. Hans D., Srivastav S.K., Singal C., et al. Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J. Bone Miner. Res. 1999, 14: 644–651.

    Article  CAS  PubMed  Google Scholar 

  39. Karlsson M.K., Duan Y., Ahlborg H., Obrant K.J., Johnell O., Seeman E. Age, gender, and fragility are associated with differences in quantitative ultrasound independent of bone mineral density. Bone 2001, 28: 118–122.

    Article  CAS  PubMed  Google Scholar 

  40. Mauloni M., Rovati L.C., Cadossi R., De Terlizzi F., Ventura V., De Aloysio D. Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx: a four-year follow-up study. Menopause 2000, 7: 402–412.

    Article  CAS  PubMed  Google Scholar 

  41. Balikian P., Burbank K., Houde J., et al. Bone mineral density and broadband ultrasound attenuation with estrogen treatment of postmenopausal women. J. Clin. Densitom. 1998, 1: 19–26.

    Article  CAS  PubMed  Google Scholar 

  42. Gonnelli S., Cepollaro C., Pondrelli C., et al. Ultrasonography is able to detect longitudinal changes induced by alendronate. J. Bone Miner. Res. 1999, 14: S139 (Abstract).

    Google Scholar 

  43. Krieg M.A., Jacquet A.F., Bremgartner M., Cuttelod S., Thieband D., Burckhardt P. Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly instituzionalized women: a longitudinal study. Osteoporos. Int. 1999, 9: 483–488.

    CAS  PubMed  Google Scholar 

  44. Blanckaert F., Cortet B., Coquerelle P., et al. Contribution of calcaneal ultrasonic assessment to the evaluation of postmenopausal and glucocorticoid-induced osteoporosis. Rev. Rheum. 1997, 64: 305–313.

    CAS  Google Scholar 

  45. Njeh C.F., Boivin C.M., Gough A., et al. Evaluation of finger ultrasound in the assessment of bone status with application of rheumatoid arthritis. Osteoporos. Int. 1999, 9: 82–90.

    Article  CAS  PubMed  Google Scholar 

  46. Luisetto G., Camozzi V., De Terlizzi F. Use of quantitative ultrasonography in differentiating osteomalacia from osteoporosis: preliminary study. J. Ultrasound Med. 2000, 19: 251–256.

    CAS  PubMed  Google Scholar 

  47. Gonnelli S., Montagnani A., Cepollaro C., et al. Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos. Int. 2000, 11: 255–260.

    Article  CAS  PubMed  Google Scholar 

  48. Montagnani A., Gonnelli S., Cepollaro C., et al. Quantitative ultrasound in the assessment of skeletal status in uremic patients. J. Clin. Densitom. 1999, 2: 389–395.

    Article  CAS  PubMed  Google Scholar 

  49. Cepollaro C., Gonnelli S., Pondrelli C., et al. Osteogenesis imperfecta: bone turnover, bone density and ultrasound parameters. Calcif. Tissue Int. 1999, 65: 129–132.

    Article  CAS  PubMed  Google Scholar 

  50. Cepollaro C., Gonnelli S., Pondrelli C., et al. Usefulness of ultrasound in Sudeck’s atrophy of the foot. Calcif. Tissue Int. 1998, 62: 538–541.

    Article  CAS  PubMed  Google Scholar 

  51. Hadji P., Hars O., Sturm G., Bauer T., Emons G., Schulz K.D. The effect of long-term, non suppressive levothyroxine treatment on quantitative ultrasonometry of bone in women. Eur. J. Endocrinol. 2000, 142: 445–450.

    Article  CAS  PubMed  Google Scholar 

  52. Cortet B., Cortet C., Blanckaert F., et al. Quantitative ultrasound of bone and markers of bone turnover in Cushing’s syndrome. Osteoporos. Int. 2001, 12: 117–123.

    Article  CAS  PubMed  Google Scholar 

  53. Cepollaro C., Gonnelli S., Bruni D., et al. Dual x-ray absorptiometry and bone ultrasonography in patients with Rett syndrome. Calcif. Tissue Int. 2001, 69: 259–262.

    Article  CAS  PubMed  Google Scholar 

  54. Van den Bergh J.P.W., Hermus A.R.M.M., Spruyt A.I., Sweep C.G.J., Corstens F.H.M., Smals A.G.H. Bone mineral density and quantitative ultrasound parameters in patients with Klinefelter’s syndrome after long-term testosterone substitution. Osteoporos. Int. 2001, 12: 55–62.

    Article  PubMed  Google Scholar 

  55. Phillipov G., Holsman M., Phillips P. The clinical role of quantitative ultrasound in assessing fracture risk and bone status. M.J.A. 2000, 173: 208–211.

    CAS  Google Scholar 

  56. Pocock N.A., Culton N.L., Gilbert G.R., et al. Potential roles for quantitative ultrasound in the management of osteoporosis. M.J.A. 2000, 173: 355–358.

    CAS  Google Scholar 

  57. Frost M.L., Blake G.M., Fogelman I. Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos. Int. 2000, 11: 321–330.

    Article  CAS  PubMed  Google Scholar 

  58. Frost M.L., Balke G.M., Fogelman I. Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J. Bone Miner. Res. 2001, 16: 406–416.

    Article  CAS  PubMed  Google Scholar 

  59. Nairus N., Ahmadi S., Baker S., Baran D. Quantitative ultrasound: an indicator of osteoporosis in perimenopausal women. J. Clin. Densitom. 2000, 3: 141–147.

    Article  CAS  PubMed  Google Scholar 

  60. Lippuner K., Fuchs G., Ruetsche A.G., Perrelet R., Casez J.P., Neto I. How well do radiographic absorptiometry and quantitative ultrasound predict osteoporosis at spine or hip? J. Clin. Densitom. 2000, 3: 241–249.

    Article  CAS  PubMed  Google Scholar 

  61. Stewart A., Reid D.M. Quantitative ultrasound or clinical risk factors — which best identifies women at risk of osteoporosis? Br. J. Radiol. 2000, 73: 165–171.

    CAS  PubMed  Google Scholar 

  62. Langton C.M., Ballard P.A., Langton D.K., Purdie D.W. Maximising the cost effectiveness of BMD referral for DXA using ultrasound as a selective population prescreen. Technol. Health Care 1997, 5: 235–241.

    CAS  PubMed  Google Scholar 

  63. Ayers M., Prince M., Ahmadi S., Baran D.T. Reconciling quantitative ultrasound of the calcaneus with x-ray based measurements of the central skeleton. J. Bone Miner. Res. 2000, 15: 1850–1855.

    Article  CAS  PubMed  Google Scholar 

  64. Miller P.D., Bonnick S.L., Johnston C.C. Jr., et al. The challenges of peripheral bone density testing: which patients need additional central density skeletal measurements. J. Clin. Densitom. 1998, 1: 211–217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gonnelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonnelli, S., Cepollaro, C. The use of ultrasound in the assessment of bone status. J Endocrinol Invest 25, 389–397 (2002). https://doi.org/10.1007/BF03344023

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344023

Key-words

Navigation