Skip to main content
Log in

Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): Kinetics and isotherm studies

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Arsenic is a ubiquitous element in the environment and occurs naturally in both organic and inorganic forms. Under aerobic condition, the dominant form of arsenic in waters is arsenate, which is highly mobile and toxic. Arsenic poisoning from drinking water remains a serious world health issue. There are various standard methods for arsenic removal from drinking waters (coagulation, sorption, ion-exchange reactions or methods of reverse osmosis) and alternative methods, such as biosorption. Biosorption of arsenic from natural and model waters by native or chemically modified (with urea or ferric oxyhydroxides) plant biomass prepared from sawdust of Picea abies was studied. The kinetic of the adsorption process fitted well the pseudo second order adsorption model and equilibrium was achieved after 2 h. The results showed that biosorption was well described by both Langmuir and Freundlich isotherms. The maximum biosorption capacity of the sawdust modified with ferric oxyhydroxides, evaluated by Langmuir adsorption model, was 9.259 mg/g, while the biosorption capacity of unmodified biosorbent or biosorbent modified with urea was negligible. The adsorption capacity is comparable to results published by other authors, suggesting that the prepared chemically modified biosorbent has potential in remediation of contaminated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; Hefny, M.; El-Chagbaby, G. A. F., (2007). Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Tech., 4 (1), 67–73 (7 pages).

    Article  CAS  Google Scholar 

  • Aksu, Z., (2001). Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: Effect of temperature. Sep. Purif. Tech., 21 (3), 285–294 (10 pages).

    Article  CAS  Google Scholar 

  • Boddu, V. M.; Abburi, K.; Talbott, J. L.; Smith, E. D.; Haasch, R., (2008). Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res., 42 (3), 633–642 (10 pages).

    Article  CAS  Google Scholar 

  • Cernansky, S.; Urik, M.; >Sevc, J.; Hiller, E., (2007). Biosorption of arsenic and cadmium from aqueous solutions. Afr. J. Biotechnol., 6 (16), 1932–1934 (3 pages).

    CAS  Google Scholar 

  • Chmielewská, E.; Sabová, L.; Jesenák, K., (2008). Study of adsorption phenomena ongoing onto clinoptilolite with the immobilized interfaces. J. Therm. Anal. Calorim., 92 (2), 567–571 (5 pages).

    Article  Google Scholar 

  • Daus, B.; Wennrich, R.; Weiss, H., (2004). Sorption materials for arsenic removal from water: A comparative study. Water Res., 38 (12), 2948–2954 (7 pages).

    Article  CAS  Google Scholar 

  • DeMarco, M. J.; SenGupta, A. K.; Greenleaf, J. E., (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res., 37 (1), 164–176 (13 pages).

    Article  CAS  Google Scholar 

  • Eblin, K. E.; Bowen, M. E.; Cromey, D. W.; Bredfeldt, T. G.; Mash, E. A.; Lau, S. S.; Gandolfi, A. J., (2006). Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol. Appl. Pharm., 217(1), 7–14 (8 pages).

    Article  CAS  Google Scholar 

  • Freundlich, H., (1906). Über die adsorption in lösungen. Z. Phys. Chem., 57, 384–470 (7 pages).

    Google Scholar 

  • Goldberg, S.; Johnston, C. T., (2001). Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid. Interf. Sci., 234 (1), 204–216 (13 pages).

    Article  CAS  Google Scholar 

  • Hiller, E.; Veselskâ, V.; Majzlan, J., (2007). Arsenic mobility in stream sediments and impoundment material as evaluated by column and batch experiments. J. Hydrol. Hydromech., 55 (4), 223–235 (13 pages).

    CAS  Google Scholar 

  • Ho, Y. S., (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res., 40 (1), 119–125 (7 pages).

    Article  CAS  Google Scholar 

  • Ho, Y. S.; McKey, G., (1999). Pseudo-second order model for sorption processes. Proc. Biochem., 34 (5), 451–465 (15 pages).

    Article  CAS  Google Scholar 

  • Hughes, M. F., (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett., 133 (1), 1–16 (16 pages).

    Article  CAS  Google Scholar 

  • Jonsson, J.; Sherman, D. M., (2008). Sorption of As (III) and As (V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chem. Geol., 255(1–2), 173–181 (9 pages).

    Article  CAS  Google Scholar 

  • Kannan, N.; Sundaram, M. M., (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: A comparative study. Dyes Pigments, 51 (1), 25–40 (16 pages).

    Article  CAS  Google Scholar 

  • Lagergren, S., (1889). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39 (39 pages).

    Google Scholar 

  • Langmuir, I., (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc., 40 (9), 1361–1403 (43 pages).

    Article  CAS  Google Scholar 

  • Lin, T.; Wu, J., (2001). Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Res., 35 (8), 2049–2057 (9 pages).

    Article  CAS  Google Scholar 

  • Lorenzen, L.; van Deventer, J. S. J.; Landi, W. M., (1995). Factor affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng., 8(4–5), 557–569 (13 pages).

    Article  CAS  Google Scholar 

  • Loukidou, M. X.; Matis, K. A.; Zouboulis, A. I.; Liakopoulou-Kyriakido, M., (2003). Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res., 37 (18), 4544–4552 (9 pages).

    Article  CAS  Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6 (2), 183–190 (8 pages).

    CAS  Google Scholar 

  • Mamisahebei, S.; Jahed Khaniki, G. R.; Torabian, A.; Nasseri, S.; Naddafi, K., (2007). Removal of arsenic from aqueous solution by pretreated waste tea fungal biomass. Iran J. Environ. Health Sci. Eng., 4 (2), 85–92 (8 pages).

    CAS  Google Scholar 

  • Murugesan, G. S.; Sathishkumar, M.; Swaminathan, K., (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technol., 97 (3), 483–487 (5 pages).

    Article  CAS  Google Scholar 

  • Pokhrel, D.; Viraraghavan, T., (2006). Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res., 40 (3), 549–552 (4 pages).

    Article  CAS  Google Scholar 

  • Pokhrel, D.; Viraraghavan, T., (2008). Arsenic removal from an aqueous solution by modified A. niger biomass: Batch kinetic and isotherm studies. J. Hazard Mater., 150 (3), 818–825 (8 pages).

    Article  CAS  Google Scholar 

  • Rahaman, M. S.; Basu, A.; Islam, M. R., (2008). The removal of As (III) and As (V) from aqueous solutions by waste materials. Bioresource Technol., 99 (8), 2815–2823 (9 pages).

    Article  CAS  Google Scholar 

  • Sato, Y.; Kang, M.; Kamei, T.; Magara, Y., (2002). Performance of nanofiltration for arsenic removal. Water Res., 36 (13), 3371–3377 (7 pages).

    Article  CAS  Google Scholar 

  • Seki, H.; Suzuki, A.; Maruyama, H., (2005). Biosorption of chromium (VI) and arsenic (V) onto methylated yeast biomass. J. Colloid. Interf. Sci., 281 (2), 261–266 (6 pages).

    Article  CAS  Google Scholar 

  • Singh, D. B.; Prasad, G.; Rupainwar, D. C., (1996). Adsorption technique for the treatment of As (V)-rich effluents. Colloid. Surface. A, 111(1–2), 49–56 (8 pages).

    Article  CAS  Google Scholar 

  • Song, S.; Lopez-Valdivieso, A.; Hernandes-Campos, D. J.; Peng, C.; Monroy-Fernandez, M. G.; Razo-Soto, I., (2006). Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res., 40 (2), 364–372 (9 pages).

    Article  CAS  Google Scholar 

  • Weber, W. J.; Morris, J. C., (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (17), 31–60 (30 pages).

    Google Scholar 

  • WHO, (1996). Health criteria and other supporting information. In: World Health Organization, Guidelines for drinking-water quality, 2nd, 2, Geneva.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Urík M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urík, M., Littera, P., >Sevc, J. et al. Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): Kinetics and isotherm studies. Int. J. Environ. Sci. Technol. 6, 451–456 (2009). https://doi.org/10.1007/BF03326084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326084

Keywords

Navigation