Skip to main content
Log in

Detection and Characterization of ACC Deaminase in Plant Growth Promoting Rhizobacteria

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme 1-aminocyclopropane-1-carboxylate deaminase converts ACC, the precursor of the plant hormone ethylene to α-ketobutyrate and ammonium. The enzyme has been identified in few soil bacteria, and is proposed to play a key role in plant growth promotion. In this study, the isolates of plant growth promoting rhizobacteria were screened for ACC deaminase activity based on their ability to grow on ACC as a sole nitrogen source. The selected isolates showed the presence of other plant growth promoting characteristics such as IAA production, phosphate solubilization and siderophore production. The role of ACC deaminase in lowering ethylene production under cadmium stress condition was also studied by measuring in vitro ethylene evolution by wheat seedlings treated with ACC deaminase positive isolates. Nucleic acid hybridization confirmed the presence of ACC deaminase gene (acdS) in the bacterial isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC-1:

aminocyclopropane-1-carboxylic acid

CAS:

Chrome Azurol S

CMC:

carboxy methyl cellulose

DF:

Dworkin and Foster

HCN:

hydrogen cyanide

IAA:

indole acetic acid

KMB:

Kings’s medium B

LB:

Luria-Bertani

PGPR:

plant growth promoting rhizobacteria

PLP:

pyridoxal 5′-phosphate

References

  1. Kloepper JW, Lifshitz R & Zablotowicz RM, Trends Biotechnol, 7 (1989) 39.

    Article  Google Scholar 

  2. Glick BR, Can J Microbiol, 41 (1995) 109.

    Article  CAS  Google Scholar 

  3. Glick BR, Patten CL, Holguin G & Penrose DM, In Biochemical and genetic mechanisms used by plant growth promoting bacteria, Imperial College Press, London, (1999) p171.

    Book  Google Scholar 

  4. Schwyn B & Neiland JB, Anal Biochem, 160 (1987) 47.

    Article  PubMed  CAS  Google Scholar 

  5. Honma M & Shimomura T, Agric Biol Chem, 42 (1978) 1825.

    Article  CAS  Google Scholar 

  6. Glick BR, Penrose DM & Li J, J Theor Biol, 190 (1998) 63.

    Article  PubMed  CAS  Google Scholar 

  7. Penrose DM, Moffatt BA & Glick BR, Can J Microbiol, 47 (2001) 77.

    Article  PubMed  CAS  Google Scholar 

  8. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ & Stepanok VV, Can J Microbiol, 47 (2001) 242.

    Article  Google Scholar 

  9. Burd GI, Dixon DG & Glick BR, Can J Microbiol, 46 (2000) 237.

    Article  PubMed  CAS  Google Scholar 

  10. Grichko VP & Glick BR, Plant Physiol Biochem, 39 (2001) 11.

    Article  CAS  Google Scholar 

  11. Mayak S, Tirosh T & Glick BR, Plant Physiol Biochem, 42 (2004) 565.

    Article  PubMed  CAS  Google Scholar 

  12. Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B & Hiatt WR, J Bacteriol, 173 (1991) 5260.

    PubMed  CAS  Google Scholar 

  13. Campbell BG & Thomson JA, FEMS Microbiol Lett, 138 (1996) 207.

    Article  PubMed  CAS  Google Scholar 

  14. Shah S, Li J, Moffatt BA & Glick BR, Can J Microbiol, 44 (1998) 833.

    Article  PubMed  CAS  Google Scholar 

  15. Hontzeas N, Richardson AO, Belimov AA, Safranova VI, Abu-Omar MM & Glick BR, Appl Environ Microbiol, 71 (2005) 7556.

    Article  PubMed  CAS  Google Scholar 

  16. Blaha D, Prigent-Combaret C, Mirza MS & Moënne-Loccoz Y, FEMS Microbiol Ecol, 56 (2006) 455.

    Article  PubMed  CAS  Google Scholar 

  17. Govindasamy V, Senthilkumar M, Kishore Gaikwad & Annapurna K, Curr Microbiol, 57 (2008) 312.

    Article  PubMed  CAS  Google Scholar 

  18. Penrose DM & Glick BR, Physiol Plant, 118 (2003) 10.

    Article  PubMed  CAS  Google Scholar 

  19. Dworkin M & Foster JW, J Bacteriol, 75 (1958) 592.

    PubMed  CAS  Google Scholar 

  20. Bric JIM, Bostock RM & Silverstone SE, Appl Environ Microbiol, 57 (1991) 535.

    PubMed  CAS  Google Scholar 

  21. Pikovskya RI, Microbiol, 17 (1948) 362.

    Google Scholar 

  22. Bakker AW & Schippers B, Soil Biol Biochem, 19 (1987) 451.

    Article  CAS  Google Scholar 

  23. Charles TC & Nester EW, J Bacteriol, 175 (1993) 6614.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna.

Additional information

Part of the Ph.D thesis submitted to Post Graduate School, IARI, New Delhi - 110 012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindasamy, V., Senthilkumar, M., Mageshwaran, V. et al. Detection and Characterization of ACC Deaminase in Plant Growth Promoting Rhizobacteria. J. Plant Biochem. Biotechnol. 18, 71–76 (2009). https://doi.org/10.1007/BF03263298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263298

Key words

Navigation