Skip to main content
Log in

The T Helper Cell Shift in AIDS

Significance for Pharmacotherapy

  • Leading Article
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

We recently postulated that susceptibility to HIV infection and progression of HIV-infected individuals to AIDS is controlled by cytokines that regulate 2 functionally distinct subsets of T helper (TH) lymphocytes. These subsets are TH1, which mainly enhance cell-mediated immunity and are regulated by type 1 cytokines. and TH2, which mainly augment antibody production and are regulated by type 2 cytokines.

HIV-seronegative individuals exposed to HIV may exhibit strong HIV-specific T cell-mediated immunity, since both HIV-specific T helper and T cytotoxic lymphocytes are activated in the absence of seroconversion and disease. Additionally, during progression of HIV-seropositive individuals to AIDS. a decline is observed in type 1 cytokines as well as an increase in the production of type 2 cytokines by HIV-positive peripheral blood mononuclear cells stimulated in vitro. The type 1 to type 2 switch is predictive for the following clinically relevant events: (a) reduction in CD4+ cell counts; (b) time to diagnosis of AIDS; and (c) time to death.

The manipulation of the immune response to induce and strengthen HIV-specific immunity may thus be useful in the management of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levy JA. HIV pathogenesis and long-term survival. AIDS 1993; 7: 1401–10

    Article  PubMed  CAS  Google Scholar 

  2. Blanche S, Rouzioux C, Guihard Moscato ML, et al. A prospective study of infants born to women seropositive for human immunodeficiency virus type 1. N Engl J Med 1989; 320; 1643–8

    Article  PubMed  CAS  Google Scholar 

  3. Scott GB, Hutto C, Mackuch RW, et al. Survival in children with perinatally acquired human immunodeficiency virus type 1 infection. N Engl J Med 1989; 321: 1791–6

    Article  PubMed  CAS  Google Scholar 

  4. Blanche S, Tardieu M, Duliega AM, et al. Longitudinal study of 94 HIV symptomatic infants with materno-foetal HIV infection: evidence for a bimodal expression of clinical and biological symptoms. Am J Dis Child 1990; 144: 1210–5

    PubMed  CAS  Google Scholar 

  5. Auger I, Thomas P, De Gruttola V, et al. Incubation period for pediatric AIDS patients. Nature 1988; 336: 575–7

    Article  PubMed  CAS  Google Scholar 

  6. Johnson JP, Nair P, Hines SE, et al. Natural history and serologic diagnosis of infants born to human immunodeficiency virus-infected women. Am J Dis Child 1989; 143: 1147–53

    PubMed  CAS  Google Scholar 

  7. Thomas P, Singh T, Williams R, et al. Trends in survival for children with maternally transmitted acquired immunodeficiency syndrome in New York City, 1982-1989. Pediatr Infect Dis J 1992; 11: 34–9

    Article  PubMed  CAS  Google Scholar 

  8. Tovo PA, de Martino M, Gabiano C, et al. Prognostic factors and survival in children with perinatal HIV-1 infection. Lancet 1992; 339: 1249–53

    Article  PubMed  CAS  Google Scholar 

  9. Italian Register for HIV infection in children. Features of children perinatally infected with HIV-1 surviving longer than 5 years. Lancet 1994; 343: 191–5

    Google Scholar 

  10. Cohen J. Basic research comes to the fore as clinical results lag. Science 1994 265: 1028–9

    Article  PubMed  CAS  Google Scholar 

  11. Clerici M, Shearer GM. Is HIV associated with a TH1 → TH2 switch? Immunol Today 1993; 14: 107–11

    Article  PubMed  CAS  Google Scholar 

  12. Clerici M, Shearer GM. The TH1/TH2 theory of HIV infection: new insights. Immunol Today 1994. In press

    Google Scholar 

  13. Mosmann TR, Coffman RI. Two types of mouse T helper cell clone: implication for immune regulation. Immunol Today 1987; 8: 223–6

    Article  Google Scholar 

  14. Mosmann TR, Coffman RI. TH1 and TH2 cells: different pattern of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–68

    Article  PubMed  CAS  Google Scholar 

  15. Del Prete GF, De Carli M, Mastromauro C, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 helper or type 2 helper) profile of cytokine production. J Clin Invest 1991 88; 346–50

    Article  PubMed  Google Scholar 

  16. Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991; 12: 56–7

    Article  Google Scholar 

  17. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081–98

    Article  PubMed  CAS  Google Scholar 

  18. Ahearne PM, Matthews TJ, Lyerly HK, et al. Cellular immune response to viral peptides in patients exposed to HIV. AIDS Res Hum Retroviruses 1988; 4: 259–67

    Article  PubMed  CAS  Google Scholar 

  19. Ranki AM, Mattinen S, Yarchoan R, et al. T cell responses to HIV in infected individuals with and without zidovudine therapy and in HIV exposed sexual partners. AIDS 1989; 3: 63–9

    Article  PubMed  CAS  Google Scholar 

  20. Cease KB, Margalit H, Cornette JL, et al. Helper T-cell antigenic site identification in the acquired immunodeficiency syndrome virus gp120 envelope protein and induction of immunity in mice to the native protein using a 16-residue synthetic peptide. Proc Natl Acad Sci USA 1989; 84: 4249–53

    Article  Google Scholar 

  21. Hale PM, Cease KB, Houghten RA, et al. T cell multideterminant regions in the human immunodeficiency virus envelope: toward overcoming the problem of major histocompatibility complex restriction. Int Immunol 1989; 1: 409–18

    Article  PubMed  CAS  Google Scholar 

  22. Clerici M, Stocks NI, Zajac RA, et al. Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV seropositive individuals. Nature 1989; 339: 383–5

    Article  PubMed  CAS  Google Scholar 

  23. Clerici M, Berzofsky JA, Shearer GM, et al. HIV-1 exposure indicated by HIV-specific T helper cell responses before detection of infection by polymerase chain reaction and serum antibodies. J Infect Diseases 1991; 164: 178–82

    Article  CAS  Google Scholar 

  24. Clerici M, Giorgi JV, Chou-C-C, et al. Cell-mediated immune response to human immunodeficiency virus (HIV) type 1 in seronegative homosexual men with recent sexual exposure to HIV-1. J Infect Dis 1992; 165: 1012–19

    Article  PubMed  CAS  Google Scholar 

  25. Clerici M, Sison AV, Berzofsky JA, et al. Cellular immune factors associated with mother-to-infant transmission of HIV. AIDS 1993; 7: 1427–33

    Article  PubMed  CAS  Google Scholar 

  26. Clerici M, Levin JM, Kessler HA, et al. HIV-specific T helper activity in HIV seronegative health care workers accidentally exposed to HIV-contaminated blood. JAMA 1994; 271: 42–6

    Article  PubMed  CAS  Google Scholar 

  27. Rowland-Jones SL, Nixon DF, Aldhous MC, et al. HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet 1993; 341: 860–1

    Article  PubMed  CAS  Google Scholar 

  28. Langlade-Demoyen P, Ngo-Giang-Huong N, Ferchal F, et al. Human immunodeficiency virus (HIV) nef-specific cytotoxic T lymphocytes in noninfected heterosexual contact of HIV-infected patients. J Clin Invest 1994; 93: 1293–7

    Article  PubMed  CAS  Google Scholar 

  29. Clerici M, Clarck EA, Polacino P, et al. T-cell proliferation to subinfectious doses of SIV correlates with lack of infection after challenge of macaques. AIDS 1994; 8: 1391–6

    Article  PubMed  CAS  Google Scholar 

  30. Levy JA. Mechanisms of pathogenesis and long term survival with HIV-AIDS [abstract PS-05-2]. Proceedings of the XI International Conference on AIDS. 1993 Jun 6-11; Berlin

  31. Vyakarnam A, Matear PM, Martin SJ, et al. HIV replication inhibited by TH1 but not TH2 CD4+ T cell clones specific for HIV-1 gag p24 [abstract WS A 15-2], Proceedings of the XI International Conference on AIDS. 1993 Jun 6-11; Berlin

  32. Walker CM, Levy JA. A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 1989; 66: 628–30

    PubMed  CAS  Google Scholar 

  33. Clerici M, Stocks NI, Zajac RA, et al. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus seropositive patients: independence of CD4+ cell numbers and clinical staging. J Clin Invest 1989; 84: 1892–9

    Article  PubMed  CAS  Google Scholar 

  34. Lucey DR, Melcher GP, Hendrix CW, et al. The US Air Force HIV study 1985-1990: immunological analyses, seroconversion and the potential utility of a T-helper functional assay to predict change in CD4+ T-cell counts during early stage HIV infection. J Infect Dis 1991; 164: 631–7

    Article  PubMed  CAS  Google Scholar 

  35. Dolan MJ, Melchers GP, Clerici M, et al. A T cell functional assay combined with measurement of CD4+/CD29 bright cells is predictive of death in HIV infection [abstract WS B 02-6]. Proceedings of the XI International Conference on AIDS. 1993 Jun 6-11; Berlin

  36. Clerici M, Roilides E, Butler KM, et al. Changes in T helper cell function in human immunodeficiency virus infected children during dideoxyinosine therapy as a measure of antiretroviral activity. Blood 1992; 80: 2196–202

    PubMed  CAS  Google Scholar 

  37. Clerici M, Hakim FT, Venzon DJ, et al. Changes in interleukin 2 and interleukin 4 production in asymptomatic, HIV-seropositive individuals. J Clin Invest 1993; 91: 759–65

    Article  PubMed  CAS  Google Scholar 

  38. Clerici M, Wynn TA, Berzofsky JA, et al. Role of interleukin-10 (IL-10) in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus (HIV-1). J Clin Invest 1994; 93: 768–75

    Article  PubMed  CAS  Google Scholar 

  39. Benjamin D, Knobloch TJ, Dayton MA. Human B-cell interleukin-10: B-cell lines derived from patients with AIDS and Burkitt lymphoma constitutively secrete large quantities of interleukin-10. Blood 1992; 80: 1289–99

    PubMed  CAS  Google Scholar 

  40. Meyaard L, Otto SA, De Jong R, et al. Preferential outgrowth of TH2 cells after HIV infection [abstract WS A 16-3]. Proceedings of the XI International Conference on AIDS. 1993 Jun 6-11; Berlin

  41. Barcellini W, Rizzardi GP, Borghi MO, et al. TH1 and TH2 cytokine production by peripheral blood mononuclear cells from HIV-infected patients. AIDS 1994; 8: 757–62

    Article  PubMed  CAS  Google Scholar 

  42. Navikas V, Link J, Wahren B, et al. Increased levels of interferon-gamma (IFN-gamma), IL-4 and transforming growth factor-beta (TGF-beta) mRNA expressing blood mononuclear cells in human HIV infection. Clin Exp Immunol 1994; 96: 59–63

    Article  PubMed  CAS  Google Scholar 

  43. Navikas V, Link J, Persson C, et al. Increased expression of IL-6, IL-10, TNF-alfa and perforin in blood mononuclear cells in human HIV infection. AIDS Res Human Retroviruses. In press

  44. Chehimi J, Trinchieri G, Frank I. IL-12 deficiency in HIV-infected patients. J Exp Med 1994; 179: 1361–6

    Article  PubMed  CAS  Google Scholar 

  45. Martinez-Maza O. IL-6 in AIDS. Res Immunol 1992; 143: 764–9

    Article  PubMed  CAS  Google Scholar 

  46. Smith KJ, Skelton HG, Drabick JJ, et al. Hypereosinophilia secondary to immunodysregulation in patients with HIV-1 disease. Arch Dermatol 1994; 130: 119–21

    Article  PubMed  CAS  Google Scholar 

  47. Lucey DR, Zajac RA, Melcher GP, et al. Serum IgE levels in 622 persons with HIV infection: IgE elevation with marked depletion of CD4+ T-cells. AIDS Res Human Retroviruses 1990; 6: 427–9

    Article  CAS  Google Scholar 

  48. Israel-Biet D, Labrousse F, Tourani J-M, et al. Elevation of IgE in HIV-infected subjects: a marker of poor prognosis. J Allergy Clin Immunol 1992; 89: 68–75

    Article  PubMed  CAS  Google Scholar 

  49. Vigano’ A, Principi N, Crupi L, et al. Elevation of IgE in HIV-infected children and its correlation with the progression of the disease. J Allergy Clin Immunol. In press

  50. Vigano’ A, Principi N, Villa ML, et al. Immunologic characterization of children vertically infected with human immunodeficiency virus with slow or rapid progression. J Pediatr. In press

  51. Smith CA, Williams GT, Kingston R, et al. Antibodies to the CD3/TcR complex induce death by apoptosis in immature T cells in thymic cultures. Nature 1990; 337: 181–4

    Article  Google Scholar 

  52. Golstein P, Ojcius DM, Young JDE. Cell death mechanisms and the immune system. Immunol Rev 1991; 121: 29–65

    Article  PubMed  CAS  Google Scholar 

  53. Cohen IJ, Duke RC, Fadok VA, et al. Apoptosis and programmed cell death in immunity. Annu Rev Immunol 1992; 10: 267–93

    Article  PubMed  CAS  Google Scholar 

  54. Gougeon ML, Olivier S, Garcia D, et al. Mise en evidence d’un processus d’engagement vers la mort cellulaire par apoptose dans les lympocytes de patients infecté par le VIH. C R Acad Sci III 1991; 312: 529–40

    PubMed  CAS  Google Scholar 

  55. Ameisen JC, Capron A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 1991; 12: 102–06

    Article  PubMed  CAS  Google Scholar 

  56. Nieto MA, Gonzalez A, Lopez-Rivas A, et al. IL-2 protects against anti-CD3-induced cell death in human medullary thymocytes. J Immunol 1990; 145: 1364–71

    PubMed  CAS  Google Scholar 

  57. Groux H, Monte D, Plouvier B, et al. CD3-mediated apoptosis of human medullary thymocytes and activated T cells: respective roles of interleukin-1, interkeukin-2, interferon gamma, and accessory cells. Eur J Immunol 1993; 23: 1623–30

    Article  PubMed  CAS  Google Scholar 

  58. Clerici M, Sarin A, Coffman RL, et al. Type 1/type 2 cytokine modulation of T cell programmed cell death as a model for HIV pathogenesis. Proc Natl Acad Sci USA. In press

  59. Yarchoan R, Mitsuya H, Broder S. Challenges in the therapy of HIV infection. Immunol Today 1993; 14: 303–9

    Article  PubMed  CAS  Google Scholar 

  60. Clerici M, Lucey DR, Berzofsky JA, et al. Restoration of HIV-specific cell mediated immune responses by interleukin-12 in vitro. Science 1993; 262: 1721–4

    Article  PubMed  CAS  Google Scholar 

  61. Anonymous. Immune based therapies for HIV infection [meeting report]. Clin Immunol Spectrum 1993; 6: 18–21

  62. Cohen J. Jitters jeopardize AIDS vaccine trials. Science 1993; 262: 980–1

    Article  PubMed  CAS  Google Scholar 

  63. Bolognesi D. The dilemma of developing a vaccine against HIV. Proceedings of the X International Conference on AIDS [abstract PS 4]. 1994 Aug 7-12: Yokohama

  64. Mosier DE, Gulizia RJ, MacIsaac PD, et al. Resistance to human immunodeficiency virus 1 infection of SCID mice reconstituted with peripheral blood leukocytes from donors vaccinated with vaccinia gp160 and recombinant gp160. Proc Natl Acad Sci USA 1993; 90: 2443–7

    Article  PubMed  CAS  Google Scholar 

  65. Scott P. IL-12: initiation cytokine for cell mediated immunity. Science 1993; 260: 496–7

    Article  PubMed  CAS  Google Scholar 

  66. Salk J, Bretscher PA, Salk PL, et al. A strategy for prophylactic vaccination against HIV. Science 1993; 260: 496–497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clerici, M., Shearer, G.M. The T Helper Cell Shift in AIDS. Clin Immunother 3, 95–101 (1995). https://doi.org/10.1007/BF03259271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259271

Keywords

Navigation