Skip to main content
Log in

The Role of Molecular Markers in Predicting Response to Therapy in Patients with Colorectal Cancer

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Advances in systemic therapy for colorectal cancer have dramatically improved prognosis. While disease stage has traditionally been the main determinant of disease course, several molecular characteristics of tumor specimens have recently been shown to have prognostic significance. Although to date no molecular characteristics have emerged as consistent predictors of response to therapy, retrospective studies have investigated the role of a variety of biomarkers, including microsatellite instability, loss of heterozygosity of 18q, type II transforming growth factor β receptor, thymidylate synthase, epidermal growth factor receptor, and Kirsten-ras (KRAS). This paper reviews the current literature, ongoing prospective studies evaluating the role of these markers, and novel techniques such as gene profiling, which may help to uncover the more complex molecular interactions that will predict response to chemotherapy in patients with colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Table III
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin 2007 Jan–Feb; 57(1): 43–66

    Article  PubMed  Google Scholar 

  2. Compton CC, Greene FL. The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 2004; 54: 295–308

    Article  PubMed  Google Scholar 

  3. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004 Jun 3; 350(23): 2343–51

    Article  PubMed  CAS  Google Scholar 

  4. de Gramont A, Boni C, Navarro M, et al. Oxaliplatin/5FU/LV in adjuvant colon cancer: updated efficacy results of the MOSAIC trial, including survival, with a median follow-up of six years [abstract]. J Clin Oncol 2007; 25(18S Jun 20 Suppl.): 4007

    Google Scholar 

  5. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 Jun 3; 350(23): 2335–42

    Article  PubMed  CAS  Google Scholar 

  6. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004 Jan 15; 22(2): 229–37

    Article  PubMed  CAS  Google Scholar 

  7. Baddi L, Benson 3rd AB. Adjuvant therapy in stage II colon cancer: current approaches. Oncologist 2005 May; 10(5): 325–31

    Article  PubMed  Google Scholar 

  8. Douillard JY, Bennouna J. Adjuvant chemotherapy for colon cancer: a confusing area! Ann Oncol 2005 Dec; 16(12): 1853–4

    Article  PubMed  CAS  Google Scholar 

  9. Moertel CG, Fleming TR, Macdonald JS, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 1990 Feb 8; 322(6): 352–8

    Article  PubMed  CAS  Google Scholar 

  10. Nauta R, Stablein DM, Holyoke ED. Survival of patients with stage B2 colon carcinoma: the Gastrointestinal Tumor Study Group experience. Arch Surg 1989 Feb; 124(2): 180–2

    Article  PubMed  CAS  Google Scholar 

  11. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004; 9(6): 606–16

    Article  PubMed  Google Scholar 

  12. Compton CC, Fielding LP, Burgart LJ, et al. Prognostic factors in colorectal cancer: College of American Pathologists consensus statement 1999. Arch Pathol Lab Med 2000 Jul; 124(7): 979–94

    PubMed  CAS  Google Scholar 

  13. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993 May 7; 260(5109): 812–6

    Article  PubMed  CAS  Google Scholar 

  14. Peltomaki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 1993 May 7; 260(5109): 810–2

    Article  PubMed  CAS  Google Scholar 

  15. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993 May 7; 260(5109): 816–9

    Article  PubMed  CAS  Google Scholar 

  16. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003 Mar 6; 348(10): 919–32

    Article  PubMed  CAS  Google Scholar 

  17. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of micro-satellite instability in colorectal cancer. Cancer Res 1998 Nov 15; 58(22): 5248–57

    PubMed  CAS  Google Scholar 

  18. Jenkins MA, Hayashi S, O’Shea AM, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology 2007 Jul; 133(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  19. Kim H, Jen J, Vogelstein B, et al. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 1994 Jul; 145(1): 148–56

    PubMed  CAS  Google Scholar 

  20. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993 Jun 10; 363(6429): 558–61

    Article  PubMed  CAS  Google Scholar 

  21. Bettstetter M, Dechant S, Ruemmele P, et al. Distinction of hereditary nonpoly-posis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res 2007 Jun 1; 13(11): 3221–8

    Article  PubMed  CAS  Google Scholar 

  22. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000 Jan 13; 342(2): 69–77

    Article  PubMed  CAS  Google Scholar 

  23. Samowitz WS, Curtin K, Ma KN, et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev 2001 Sep; 10(9): 917–23

    PubMed  CAS  Google Scholar 

  24. Elsaleh H, Iacopetta B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal carcinoma. Clin Colorectal Cancer 2001 Aug; 1(2): 104–9

    Article  PubMed  CAS  Google Scholar 

  25. Elsaleh H, Powell B, Soontrapornchai P, et al. p53 gene mutation, microsatellite instability and adjuvant chemotherapy: impact on survival of 388 patients with Dukes’ C colon carcinoma. Oncology 2000; 58(1): 52–9

    Article  PubMed  CAS  Google Scholar 

  26. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003 Jul 17; 349(3): 247–57

    Article  PubMed  CAS  Google Scholar 

  27. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005 Jan 20; 23(3): 609–18

    Article  PubMed  CAS  Google Scholar 

  28. Carethers JM, Chauhan DP, Fink D, et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 1999 Jul; 117(1): 123–31

    Article  PubMed  CAS  Google Scholar 

  29. Meyers M, Wagner MW, Hwang HS, et al. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 2001 Jul 1; 61(13): 5193–201

    PubMed  CAS  Google Scholar 

  30. Benson 3rd AB. Individualizing adjuvant therapy for stage II colon cancer: the potential role of MSI and 18q LOH. Colorectal Cancer Index Rev 2006; 7(1): 4–7

    Google Scholar 

  31. Elsaleh H, Joseph D, Grieu F. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 2000 May 20; 355(9217): 1745–50

    Article  PubMed  CAS  Google Scholar 

  32. Carethers JM, Smith EJ, Behling CA, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004 Feb; 126(2): 394–401

    Article  PubMed  CAS  Google Scholar 

  33. Kim GP, Colangelo LH, Wieand HS, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol 2007 Mar 1; 25(7): 767–72

    Article  PubMed  CAS  Google Scholar 

  34. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998 Dec 17; 396(6712): 643–9

    Article  PubMed  CAS  Google Scholar 

  35. Jen J, Kim H, Piantadosi S, et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 1994 Jul 28; 331(4): 213–21

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe T, Wu TT, Catalano PJ, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 2001 Apr 19; 344(16): 1196–206

    Article  PubMed  CAS  Google Scholar 

  37. Barratt PL, Seymour MT, Stenning SP, et al. DNA markers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study. Lancet 2002 Nov 2; 360(9343): 1381–91

    Article  PubMed  CAS  Google Scholar 

  38. Oxaliplatin, leucovorin, and fluorouracil with or without bevacizumab in treating patients who have undergone surgery for stage II colon cancer. ClinicalTrials. gov Identifier: NCT00217737 [online]. Available from URL: http://clinical-trials.gov/ct2/show/NCT00217737 [Accessed 2008 Mar 25]

  39. Biswas S, Chytil A, Washington K, et al. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 2004 Jul 15; 64(14): 4687–92

    Article  PubMed  CAS  Google Scholar 

  40. Grady WM, Rajput A, Myeroff L, et al. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 1998 Jul 15; 58(14): 3101–4

    PubMed  CAS  Google Scholar 

  41. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995 Jun 2; 268(5215): 1336–8

    Article  PubMed  CAS  Google Scholar 

  42. Johnston PG, Drake JC, Trepel J, et al. Immunological quantitation of thymidylate synthase using the monoclonal antibody TS 106 in 5-fluorouracil-sensitive and-resistant human cancer cell lines. Cancer Res 1992 Aug 15; 52(16): 4306–12

    PubMed  CAS  Google Scholar 

  43. Pasche B, Mulcahy M, Benson 3rd AB. Molecular markers in prognosis of colorectal cancer and prediction of response to treatment. Best Pract Res 2002 Apr; 16(2): 331–45

    Article  CAS  Google Scholar 

  44. Grem JL, Danenberg KD, Behan K, et al. Thymidine kinase, thymidylate synthase, and dihydropyrimidine dehydrogenase profiles of cell lines of the National Cancer Institute’s anticancer drug screen. Clin Cancer Res 2001 Apr; 7(4): 999–1009

    PubMed  CAS  Google Scholar 

  45. Allen WL, Johnston PG. Role of genomic markers in colorectal cancer treatment. J Clin Oncol 2005 Jul 10; 23(20): 4545–52

    Article  PubMed  CAS  Google Scholar 

  46. Johnston PG, Fisher ER, Rockette HE, et al. The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 1994 Dec; 12(12): 2640–7

    PubMed  CAS  Google Scholar 

  47. Lenz HJ, Danenberg KD, Leichman CG, et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: associations with recurrence, survival, and site. Clin Cancer Res 1998 May; 4(5): 1227–34

    PubMed  CAS  Google Scholar 

  48. Yamachika T, Nakanishi H, Inada K, et al. A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance. Cancer 1998 Jan 1; 82(1): 70–7

    Article  PubMed  CAS  Google Scholar 

  49. Edler D, Glimelius B, Hallstrom M, et al. Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol 2002 Apr 1; 20(7): 1721–8

    Article  PubMed  CAS  Google Scholar 

  50. Beck A, Etienne MC, Cheradame S, et al. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumour sensitivity to fluorouracil. Eur J Cancer 1994; 30A(10): 1517–22

    Article  PubMed  CAS  Google Scholar 

  51. van Triest B, Pinedo HM, van Hensbergen Y, et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 1999 Mar; 5(3): 643–54

    PubMed  Google Scholar 

  52. Paradiso A, Simone G, Petroni S, et al. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br J Cancer 2000 Feb; 82(3): 560–7

    Article  PubMed  CAS  Google Scholar 

  53. Leichman L, Lenz HJ, Leichman CG, et al. Quantitation of intratumoral thymidylate synthase expression predicts for resistance to protracted infusion of 5-fluorouracil and weekly leucovorin in disseminated colorectal cancers: preliminary report from an ongoing trial. Eur J Cancer 1995 Jul–Aug; 31A(7–8): 1306–10

    Article  PubMed  CAS  Google Scholar 

  54. Corsi DC, Ciaparrone M, Zannoni G, et al. Predictive value of thymidylate synthase expression in resected metastases of colorectal cancer. Eur J Cancer 2002 Mar; 38(4): 527–34

    Article  PubMed  CAS  Google Scholar 

  55. Bevacizumab and oxaliplatin combined with irinotecan or leucovorin and fluorouracil in treating patients with metastatic or recurrent colorectal cancer. Clinical Trials.gov Identifier: NCT00098787 [online]. Available from URL: http://clinicaltrials.gov/ct/show/NCT00098787 [Accessed 2008 Mar 25]

  56. Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000 Apr; 6(4): 1322–7

    PubMed  CAS  Google Scholar 

  57. Ciaparrone M, Quirino M, Schinzari G, et al. Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 2006; 70(5): 366–77

    Article  PubMed  CAS  Google Scholar 

  58. Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst 1998 May 6; 90(9): 675–84

    Article  PubMed  CAS  Google Scholar 

  59. Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 2001 Sep 1; 85(5): 692–6

    Article  PubMed  CAS  Google Scholar 

  60. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004 Jul 22; 351(4): 337–45

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein NS, Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 2001 Sep 1; 92(5): 1331–46

    Article  PubMed  CAS  Google Scholar 

  62. Mayer A, Takimoto M, Fritz E, et al. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 1993 Apr 15; 71(8): 2454–60

    Article  PubMed  CAS  Google Scholar 

  63. Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004 Apr 1; 22(7): 1201–8

    Article  PubMed  CAS  Google Scholar 

  64. Hecht J, Mitchell E, Baranda J, et al. Panitumumab antitumor activity in patients (pts) with metastatic colorectal cancer (mCRC) expressing low (1–9%) or negative (<1%) levels of epidermal growth factor receptor (EGFr) [abstract 3547]. J Clin Oncol 2006 Jun 20; 2418 Suppl. Pt I

  65. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology 2007 [online]. Available from URL: http://www.nccn.org/professionals/physician_gls/PDF/colon.pdf [Accessed 2008 Mar 25]

  66. Sartore-Bianchi A, Moroni M, Veronese S, et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 2007 Aug 1; 25(22): 3238–45

    Article  PubMed  CAS  Google Scholar 

  67. Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005 May; 6(5): 279–86

    Article  PubMed  CAS  Google Scholar 

  68. Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006 Oct 20; 24(30): 4914–21

    Article  PubMed  CAS  Google Scholar 

  69. Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007 Aug 1; 25(22): 3230–7

    Article  PubMed  CAS  Google Scholar 

  70. Lievre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. Lievre J Clin Oncol 2008 Jan 20; 26(3): 364–79

    Google Scholar 

  71. Di Fiore F, Blanchard F, Charbonnier F, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer 2007 Apr 23; 96(8): 1166–9

    Article  PubMed  Google Scholar 

  72. De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 2008 Mar; 19(3): 508–15

    Article  PubMed  Google Scholar 

  73. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003 Nov 1; 21(21): 3940–7

    Article  PubMed  CAS  Google Scholar 

  74. Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007 Aug 20; 25(24): 3712–8

    Article  PubMed  CAS  Google Scholar 

  75. Johnston PG, Mulligan K, Kay E, et al. A genetic signature of relapse in stage II colorectal cancer derived from formalin fixed paraffin embedded tissue (FFPE) using a unique disease specific colorectal array [abstract no. 3519]. J Clin Oncol 2006 Jun 20; 24 (18 Suppl. Pt I)

  76. Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 2005 May 20; 23(15): 3526–35

    Article  PubMed  CAS  Google Scholar 

  77. Mariadason JM, Arango D, Shi Q, et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003 Dec 15; 63(24): 8791–812

    PubMed  CAS  Google Scholar 

  78. Wang Y, Jatkoe T, Zhang Y, et al. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol 2004 May 1; 22(9): 1564–71

    Article  PubMed  CAS  Google Scholar 

  79. O’Connell MJ, Paik S, Yothers G, et al. Relationship between tumor gene expression and recurrence in stage II/III colon cancer: quantitative RT-PCR assay of 757 genes in fixed paraffin-embedded (FPE) tissue [abstract no. 3518]. J Clin Oncol 2006 Jun 20; 24 (18 Suppl. Pt I)

  80. Mariadason JM, Augenlicht LH, Arango D. Microarray analysis in the clinical management of cancer. Hematol Oncol Clin North Am 2003 Apr; 17(2): 377–87

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review.

Dr Benson has received consultant reimbursement and research support from the following organizations: Amgen, Imclone, Sanofi-Aventis, Pfizer, Roche, and Genetech. Dr Mulcahy has received consultant reimbursement and honoraria from Genentech and Bayer.

The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al B. Benson III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankaran, V., Wisinski, K.B., Mulcahy, M.F. et al. The Role of Molecular Markers in Predicting Response to Therapy in Patients with Colorectal Cancer. Mol Diag Ther 12, 87–98 (2008). https://doi.org/10.1007/BF03256274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256274

Keywords

Navigation