Skip to main content
Log in

Enhanced Detection of Microsatellite Instability and Mismatch Repair Gene Expression in Cutaneous Squamous Cell Carcinomas

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background: Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation.

Aims: The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples.

Methods: The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute’s Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples.

Results: Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82%) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins.

Conclusions: MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miturski R, Bogusiewicz M, Ciotta C, et al. Mismatch repair genes and microsatellite instability as molecular markers for gynecological cancer detection. Exp Biol Med 2002; 227: 579–86

    CAS  Google Scholar 

  2. Frayling IM. Microsatellite instability. Gut 1999; 45(1): 1–4

    Article  PubMed  CAS  Google Scholar 

  3. Scherer SJ, Maier SM, Seifert M, et al. p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J Bio Chem 2000; 275(48): 37469–73

    Article  CAS  Google Scholar 

  4. Scherer SJ, Welter C, Zang KD, et al. Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2. Biochem Biophys Res Commun 1996; 221(3): 722–8

    Article  PubMed  CAS  Google Scholar 

  5. Chen J, Sadowski I. Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements. Proc Natl Acad Sci USA 2005; 102(13): 4813–8

    Article  PubMed  CAS  Google Scholar 

  6. Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 2001; 10(7): 735–40

    Article  PubMed  CAS  Google Scholar 

  7. Starostik P, Muller-Hermelink H. Diagnosis of microsatellite instability-positive colorectal cancer. Expert Rev Mol Diagn 2001; 1(1): 71–80

    Article  PubMed  CAS  Google Scholar 

  8. Oda S, Maehara Y, Sumiyoshi Y, et al. Microsatellite instability in cancer: what problems remain unanswered? Surgery 2002; 131(1 Suppl.): S55–62

    Article  PubMed  Google Scholar 

  9. Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 2003; 138(7): 560–70

    PubMed  CAS  Google Scholar 

  10. Peltomaki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study: the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 1997; 113(4): 1146–58

    Article  PubMed  CAS  Google Scholar 

  11. Kloor M, von Knebel Doeberitz M, Gebert JF. Molecular testing for microsatellite instability and its value in tumor characterization. Expert Rev Mol Diagn 2005; 5(4): 599–611

    Article  PubMed  CAS  Google Scholar 

  12. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363(6429): 558–61

    Article  PubMed  CAS  Google Scholar 

  13. Aaltonen LA, Peltomaki P, Mecklin JP, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res 1994; 54(7): 1645–8

    PubMed  CAS  Google Scholar 

  14. Murata H, Khattar NH, Kang Y, et al. Genetic and epigenetic modification of mismatch repair genes hMSH2 and hMLH1 in sporadic breast cancer with microsatellite instability. Oncogene 2002; 21(37): 5696–703

    Article  PubMed  CAS  Google Scholar 

  15. Bhattacharyya N, Tao J, Klein EA, et al. Alterations of transforming growth factor beta receptor II, insulin growth factor receptor II genes in microsatellite unstable prostate carcinomas. Oncol Rep 2004; 11(1): 231–6

    PubMed  CAS  Google Scholar 

  16. Velasco A, Hewitt SM, Albert PS, et al. Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence [published erratum appears in Cancer 2002 May 15; 94 (10): 2800]. Cancer 2002 Feb 1; 94(3); 690–9

    Article  PubMed  CAS  Google Scholar 

  17. Alvino E, Marra G, Pagani E, et al. High-frequency microsatellite instability is associated with defective DNA mismatch repair in human melanoma. J Invest Dermatol 2002; 118(1): 79–86

    Article  PubMed  CAS  Google Scholar 

  18. Palmieri G, Ascierto PA, Cossu A, et al. Assessment of genetic instability in melanocytic skin lesions through microsatellite analysis of benign naevi, dysplastic naevi, and primary melanomas and their metastases. Melanoma Res 2003; 13(2): 167–70

    Article  PubMed  CAS  Google Scholar 

  19. Peiro G, Diebold J, Lohse P, et al. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Hum Pathol 2002; 33(3): 347–54

    Article  PubMed  CAS  Google Scholar 

  20. Kondo E, Furukawa T, Yoshinaga K, et al. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability. Int J Oncol 2000; 17(3): 535–41

    PubMed  CAS  Google Scholar 

  21. Wang Y, Irish J, MacMillan C, et al. High frequency of microsatellite instability in young patients with head-and-neck squamous-cell carcinoma: lack of involvement of the mismatch repair genes hMLH1 and hMSH2. Int J Cancer 2001; 93(3): 353–60

    Article  PubMed  CAS  Google Scholar 

  22. Hussein MR, Wood GS. hMLH1 and hMSH2 gene mutations are present in radial growth-phase cutaneous malignant melanoma cell lines and can be induced further by ultraviolet-B irradiation. Exp Dermatol 2003; 12(6): 872–5

    Article  PubMed  CAS  Google Scholar 

  23. Boni R, Schuster C, Nehrhoff B, et al. Epidemiology of skin cancer. Neuroendocrinology Letters 2002; 23Suppl. 2: 48–51

    PubMed  Google Scholar 

  24. World Health Organization. How common is skin cancer? [online]. Available from URL: http://www.who.int/uv/faq/skincancer/en/index1.html [Accessed 2006 July 9]

  25. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001; 63(1–3): 8–18

    Article  PubMed  CAS  Google Scholar 

  26. Quinn AG, Healy E, Rehman I, et al. Microsatellite instability in human non-melanoma and melanoma skin cancer. J Invest Dermatol 1995; 104(3): 309–12

    Article  PubMed  CAS  Google Scholar 

  27. Kushida Y, Miki H, Ohmori M. Loss of heterozygosity in actinic keratosis, squamous cell carcinoma and sun-exposed normal-appearing skin in Japanese: difference between Japanese and Caucasians. Cancer Lett. 1999 Jun 1; 140(1–2): 169–75

    Article  PubMed  CAS  Google Scholar 

  28. Cawkwell L, Li D, Lewis FA, et al. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology 1995; 109(2): 465–71

    Article  PubMed  CAS  Google Scholar 

  29. Skotheim RI, Diep CB, Kraggerud SM, et al. Evaluation of loss of heterozygosity/ allelic imbalance scoring in tumor DNA. Cancer Genet Cytogenet 2001; 127(1): 64–70

    Article  PubMed  CAS  Google Scholar 

  30. Koreth J, O’Leary JJ, O’D McGee J. Microsatellites and PCR genomic analysis. J Pathol 1996 Mar; 178(3): 239–48

    Article  PubMed  CAS  Google Scholar 

  31. National Cancer Institute. Skin cancer (PDQ®): treatment [online]. Available from URL: http://www.cancer.gov/cancertopics/pdq/treatment/skin/HealthProfessional [Accessed 2006 Aug 31]

  32. Butler D, Collins C, Mabruk M, et al. Deletion of the FHIT gene in neoplastic and invasive cervical lesions is related to high-risk HPV infection but is independent of histopathological features. J Pathol 2000; 192(4): 502–10

    Article  PubMed  CAS  Google Scholar 

  33. Zauber NP, Sabbath-Solitare M, Marotta SP, et al. Comparison of allelic ratios from paired blood and paraffin embedded normal tissue for use in a polymerase chain reaction to assess loss of heterozygosity. Molecular Diagnosis 1999; 4(1): 29–35

    Article  PubMed  CAS  Google Scholar 

  34. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of micro-satellite instability in colorectal cancer. Cancer Res 1998; 58(22): 5248–57

    PubMed  CAS  Google Scholar 

  35. Nuovo GJ, Becker J. PCR in situ hybridisation in viral detection. In: Latchman DS, editor. PCR applications in pathology: principles and practice. Oxford: Oxford University Press, 1995: 64–88

    Google Scholar 

  36. Labnews.com, Bayer Healthcare Diagnostics Division [online]. Available from URL: http://www.labnews.de/en/products/pr_openge.php [Accessed 2006 Sep 26]

  37. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004 Feb 18; 96(4): 261–8

    Article  PubMed  CAS  Google Scholar 

  38. Fleisher AS, Esteller M, Tamura G, et al. Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 2001 Jan 18; 20(3): 329–35

    Article  PubMed  CAS  Google Scholar 

  39. House MG, Herman JG, Guo MZ, et al. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 2003 Dec; 134(6): 902–8, discussion 909

    Article  PubMed  Google Scholar 

  40. Lee SC, Berg KD, Sherman ME, et al. Microsatellite instability is infrequent in medullary breast cancer. Am J Clin Pathol 2001 Jun; 115(6): 823–7

    Article  PubMed  CAS  Google Scholar 

  41. Mongiat-Artus P, Miquel C, van der Aa M, et al. Infrequent microsatellite instability in urothelial cell carcinoma of the bladder in young patients. Eur Urol 2006 Apr; 49(4): 685–90

    Article  PubMed  CAS  Google Scholar 

  42. Woo DK, Lee WA, Kim YI, et al. Microsatellite instability and alteration of E2F-4 gene in adenosquamous and squamous cell carcinomas of the stomach. Pathol Int 2000 Sep; 50(9): 690–5

    Article  PubMed  CAS  Google Scholar 

  43. Rass K, Gutwein P, Muller SM, et al. Immunohistochemical analysis of DNA mismatch repair enzyme hMSH-2 in normal human skin and basal cell carcinomas. Histochem J 2000; 32(2): 93–7

    Article  PubMed  CAS  Google Scholar 

  44. Friedrich M, Villena-Heinsen C, Meyberg R, et al. Immunohistochemical analysis of DNA ‘mismatch-repair’ enzyme human mut-S-homologon-2 in ovarian carcinomas. Histochem J 1999 Nov; 31(11): 717–22

    Article  PubMed  CAS  Google Scholar 

  45. Friedrich M. Analysis of the DNA ‘mismatch-repair’ enzyme human mut-S-homologon-2 in endometrial cancer on protein and RNA level. Eur J Gynaecol Oncol 2000; 21(3): 273–7

    PubMed  CAS  Google Scholar 

  46. Kwasniewska A, Postawski K, Gozdzicka-Jozefiak A, et al. Immunohistochemical detection of hMLH1 and hMSH2 proteins in vulvar carcinoma. Int J Mol Med 2005 Jun; 15(6): 955–61

    PubMed  CAS  Google Scholar 

  47. Liang SB, Furihata M, Takeuchi T, et al. Reduced human mismatch repair protein expression in the development of precancerous skin lesions to squamous cell carcinoma. Virchows Arch 2001; 439(5): 622–7

    PubMed  CAS  Google Scholar 

  48. Chapusot C, Martin L, Puig PL, et al. What is the best way to assess microsatellite instability status in colorectal cancer? Study on a population base of 462 colorectal cancers. Am J Surg Pathol 2004 Dec; 28(12): 1553–9

    Article  PubMed  CAS  Google Scholar 

  49. Cai KQ, Albarracin C, Rosen D, et al. Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol 2004 May; 35(5): 552–9

    Article  PubMed  CAS  Google Scholar 

  50. Ericson K, Halvarsson B, Nagel J, et al. Defective mismatch repair in patients with multiple primary tumours including colorectal cancer. Eur J Cancer 2003 Jan; 39(2): 240–8

    Article  PubMed  CAS  Google Scholar 

  51. Fleisher AS, Esteller M, Wang S, et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999 Mar 1; 59(5): 1090–5

    PubMed  CAS  Google Scholar 

  52. Soreide K, Janssen EA, Soiland H, et al. Microsatellite instability in colorectal cancer. Br J Surg 2006 Apr; 93(4): 395–406

    Article  PubMed  CAS  Google Scholar 

  53. Wild PJ, Reichle A, Andreesen R, et al. Microsatellite instability predicts poor short-term survival in patients with advanced breast cancer after high-dose chemotherapy and autologous stem-cell transplantation. Clin Cancer Res 2004 Jan 15; 10(2): 556–64

    Article  PubMed  CAS  Google Scholar 

  54. Taubert HW, Bartel F, Kappler M, et al. Reduced expression of hMSH2 protein is correlated to poor survival for soft tissue sarcoma patients. Cancer 2003 May 1; 97(9): 2273–8

    Article  PubMed  CAS  Google Scholar 

  55. Jin TX, Furihata M, Yamasaki I, et al. Human mismatch repair gene (hMSH2) product expression in relation to recurrence of transitional cell carcinoma of the urinary bladder. Cancer 1999 Jan 15; 85(2): 478–84

    Article  PubMed  CAS  Google Scholar 

  56. Saetta AA, Goudopoulou A, Korkolopoulou P, et al. Mononucleotide markers of microsatellite instability in carcinomas of the urinary bladder. Eur J Surg Oncol 2004 Sep; 30(7): 796–803

    Article  PubMed  CAS  Google Scholar 

  57. Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med 2001 Mar 29; 344(13): 975–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Medical staff of the Dermatology clinic at the Beaumont Hospital for providing samples from patients with skin cancer; we also thank Dr Muna Sabah and Mr David Butler for technical assistance. Also, we would like to acknowledge the Irish Cancer Society and the Royal College of Surgeons in Ireland (RCSI) for their financial support.

The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed J. E. M. F. Mabruk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, S.E., Kay, E.W., Leader, M. et al. Enhanced Detection of Microsatellite Instability and Mismatch Repair Gene Expression in Cutaneous Squamous Cell Carcinomas. Mol Diag Ther 10, 327–334 (2006). https://doi.org/10.1007/BF03256208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256208

Keywords

Navigation