Skip to main content
Log in

Electroplasticity—the effect of electricity on the mechanical properties of metals

  • Feature
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1990

Abstract

Investigations of the effects of an electric current on dislocation mobility and mechanical properties at low homologous temperatures (T < 0.5Tm) reveal a polarity effect and yield an electron wind force in some agreement with theory. An external directcurrent electric field has been reported to influence the creep rate of unalloyed metals at high homologous temperatures. During superplastic deformation of the 7475 Al alloy, such a field has been found to decrease the flow stress, reduce strain hardening, increase strain-rate hardening, reduce grain boundary cavitation and reduce grain growth. The effects of the field were polarity dependent and extended to the center of 1–2 mm thick specimens. No significant effect of the field on the flow stress occurred at low homologous temperatures. This suggests that the field influences atomic mobility through vacancy generation and/or migration. The occurrence of an uneven electron density at the interfaces between phases and at grain boundaries has been proposed as a factor, but this idea needs further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Conrad and A.F. Sprecher, Dislocations in Solids, ch. 43, ed. F.R.N. Nabarro, (New York: Elsevier Science, 1989), p. 497.

    Google Scholar 

  2. O.A. Troitskii and V.I. Likhtman, Dokl. Akad. Nauk SSSR, 148 (1963), p. 332.

    CAS  Google Scholar 

  3. O.A. Troitskii, Pis'ma v Zh. Eksp. & Teor. Fiz,. 10 (1969), p. 18.

    CAS  Google Scholar 

  4. O.A. Troitskii and A.G. Rozno, Fiz. Tverd. Tela, 12 (1970), p. 203.

    CAS  Google Scholar 

  5. O.A. Troitskii, Fiz. Met. & Metanoved., 32 (1971), p. 408.

    CAS  Google Scholar 

  6. O.A. Troitskii, Probl. Proch., July (1975), p. 14.

    Google Scholar 

  7. V.I. Spitsyn and O.A. Troitskii, Dokl. Akad. Nauk SSSR, 220 (1975), p. 1070.

    Google Scholar 

  8. O.A. Troitskii, Fiz-Khim. Mekh. Mater., 13 (1977), p. 46.

    CAS  Google Scholar 

  9. O.A. Troitskii, V.I. Spitsyn and V.I. Stashenko, Dokl. Akad. Nauk SSSR, 241 (1978), p. 349.

    CAS  Google Scholar 

  10. O.A. Troitskii and V.I. Stashenko, Fik. Met. & Metalloved., 47 (1979), p. 180.

    CAS  Google Scholar 

  11. O.A. Troitskii, V.I. Spitsyn and P.U. Kalymbetov, Dokl. Akad. Nauk SSSR, 253 (1980), p. 96, and Sov. Phys.-Dokl., 25 (1980), p. 5581.

    CAS  Google Scholar 

  12. O.A. Troitskii and P.V. Kalymbetov, Fiz. Met. & Metalloved., 51(1981), p. 1056, and Phys. Met.& Metallogr., 51 (1981), p. 134.

    CAS  Google Scholar 

  13. O.A. Troitskii and V.I. Stashenko, Fiz. Met. & Metalloved., 51(1981), p. 219, and Phys. Met. & Metallogr., 51(1981), p. 191.

    CAS  Google Scholar 

  14. O.A. Troitskii, V.I. Stashenko and V.I. Spitsyn, Izv. Akad. Nauk SSSR, Met., 1 (1982), p. 164.

  15. V.I. Stashenko, O.A. Troitskii and V.I. Spitsyn, Phys. Status Solidi (a), 79 (1983), p. 549.

    CAS  Google Scholar 

  16. Yu.I. Boiko, Ya.E. Geguzin and Yu.I. Kinchuk, Pis'ma v Zh. Eksp. & Teor., Fiz., 30 (1979), p. 168.

    CAS  Google Scholar 

  17. Yu.I. Boiko, Ya.E. Geguzin and Yu.I. Klinchuk, Zh. Eksp. & Teor. Fiz., 81 (1981), p. 2175.

    CAS  Google Scholar 

  18. L.B. Zuev, V.E. Gromov, V.F. Kurilov and L.I. Gurevich, Dokl. Akad. Nauk SSSR, 239 (1978), p. 84.

    CAS  Google Scholar 

  19. V.I. Spitsyn, O.A. Troitskii and P.Ya. Glzunov, Dokl. Akad. Nauk SSSR, 199 (1971), p. 810.

    CAS  Google Scholar 

  20. O.A. Troitskii, I.L. Skobtsov and A.V. Men'shikh, Fiz. Met. & Metalloved., 33 (1972), p. 392.

    CAS  Google Scholar 

  21. Yu.I. Golovin, V.M. Finkel and A.A. Sletkov, Problemy Prochnosti, 2 (1977), p. 86.

    Google Scholar 

  22. G.V. Karpenko, O.A. Kuzin, V.I. Tkachev and V.P. Rudenko, Dokl. Akad. Nauk SSSR, 227 (1976), p. 85.

    Google Scholar 

  23. V.I. Spitsyn, O.A. Troitskii, E.V. Gusev and V.K. Kurdiukov, Izv. Akad. Nauk SSSR, Met., 2 (1974), p. 123.

    Google Scholar 

  24. O.A. Troitskii, Stal', 5 (1974), p. 450.

    Google Scholar 

  25. K.M. Klimov, G.D. Shnyrev and I.I. Novikov, Dokl Akad. Nauk SSSR, 219 (1974), p. 323.

    CAS  Google Scholar 

  26. V.I. Spitsyn, O.A. Troitskii, V.G. Ryshkov and A.S. Kozyrev, Dokl. Akad. Nauk SSSR, 231 (1976), p. 402.

    CAS  Google Scholar 

  27. V.I. Spitsyn et al., Dokl. Akad. Nauk SSSR, 236 (1977), p. 861.

    Google Scholar 

  28. O.A. Troitskii, V.I. Spitsyn, N.V. Sokolov and V.G. Ryshkov, Dokl. Akad. Nauk SSSR, 237 (1977), p. 1082.

    CAS  Google Scholar 

  29. O.A. Troitskii, V.I. Spitsyn and V.G. Ryshkov, Dokl. Akad. Nauk SSSR, 243 (1978), p. 330.

    CAS  Google Scholar 

  30. K.M. Klimov and I.I. Novikov, Russ. Metall., 6 (1978), p. 127.

    Google Scholar 

  31. O.A. Troitskii, V.I. Spitsyn, N.V. Sokolov and V.G. Ryshkov, Phys. Status Solidi (a), 52 (1978), p. 85.

    Google Scholar 

  32. K.M. Klimov, A.M. Morukhovich, A.M. Glezer and B.V. Molotilov, Russ. Metall., 6 (1981), p. 68.

    Google Scholar 

  33. O.A. Troitskii, Mater. Sci. & Eng., 75 (1985), p. 37.

    CAS  Google Scholar 

  34. F.R.N. Nabarro, Theory of Crystal Dislocations (Oxford: Clarendon Press, 1967) p. 529. Reprinted 1987 (New York: Dover).

    Google Scholar 

  35. A.M. Roshchupkin, V.E. Miloshenko and V.E. Kalinin, Fiz. Tverd. Tela, 21 (1978), p. 90–99, and Sov. Phys.-Solid State, 21(1979), p. 532.

    Google Scholar 

  36. V.B. Fiks, Zh. Eksp. Theor. Fiz., 80 (1981), p. 2313.

    CAS  Google Scholar 

  37. H. Conrad, “Electromigration, Electroplasticity and Other Effects of Electric Current on the Behavior of Metals,” North Carolina State University Seminar, April 24, 1987.

    Google Scholar 

  38. V.Ya. Kravchenko, Zh. Eksp. & Teor. Fiz., 51(1966), p. 1676, and Sov. Phys.-JETP, 24 (1967), p. 1135.

    CAS  Google Scholar 

  39. M.I. Kaganov, V.Ya. Kravchenko and V.D. Natsik, Usp. Fiz. Nauk, 111 (1973), p. 655, and Sov. Phys.-Usp., 16 (1974), p. 878.

    Google Scholar 

  40. K.M. Nimov, G.O. Shnyrev and I.I. Movikov, Dokl Akad. Nauk SSSR, 219 (1974), p. 323, and Sov. Phys.-Dokl., 19 (1975), p. 787.

    Google Scholar 

  41. A. Brailsford, in USARO Workshop High Intensity Electro-Magnetic and Ultrasonic Effects on Inorganic Materials Behavior and Processing, ed. H. Conrad and I. Ahmad (Raleigh, NC: North Carolina State Univ., 1989).

    Google Scholar 

  42. A.F. Sprecher, S.L. Mannan and H. Conrad, Ada Metall., 34 (1986), p. 1145–1162.

    CAS  Google Scholar 

  43. W.D. Cao, A.F. Sprecher and H. Conrad, J. Phys. E. Sci. Instrum. 22 (1989), p. 1026.

    CAS  Google Scholar 

  44. W.D. Cao, A.F. Sprecher and H. Conrad, “The Electroplastic Effect in Nb,” in High Temperature Nb Alloys, (Warrendale, PA: TMS, to be published).

  45. W.D. Cao, A.F. Sprecher and H. Conrad, unpublished research (1989).

  46. H. Conrad, J. White, W.D. Cao, X.P. Lu and A.F. Sprehcer, “Effect of High Density Electric Current Pulses on the Fatigue of Polycrystalline Copper,” submitted to Mat. Sci Engr. 47. V.L.A. Silveira, M.F.S. Porto and W.A. Mannheimer, Scripta Met., 15 (1981), p. 945.

    Google Scholar 

  47. V.L.A. Silveira, R.A.F.O. Fortes and W.A. Mannheimer, Proc. 7th Int. Am. Conf. on Materials Technology, Mexico, 1981 (San Antonio, TX: Southwest Institute, 1981) p. 722.

    Google Scholar 

  48. V.L.A. Silveira, R.A.F.O. Fortes and W.A. Mannheimer, Beitr. Electronenm. Direkt. Oberft, 15 (1982), p. 217.

    Google Scholar 

  49. A. San Martin et al., Scripta Met., 14 (1980), p. 1041.

    Google Scholar 

  50. S.T. Kishkin and A.A. Klypin, Dokl. Akad. Nauk SSSR, 211 (1973), p. 325–327.

    Google Scholar 

  51. A.A. Klypin, Problemy Prochnosti, 7 (July 1975), p. 20–26.

    Google Scholar 

  52. H. Conrad, W.D. Cao, X.P. Lu and A.F. Sprecher, Scripta Met., 23 (1989), p. 697.

    CAS  Google Scholar 

  53. W.D. Cao, X.P. Lu, A.F. Sprecher and H. Conrad, “Super-plastic Deformation Behavior of 7475 Aluminum Alloy in an Electric Field,” Mat Sci. & Engr., in print.

  54. W.D. Cao, X.P. Lu, A.F. Sprecher and H. Conrad, “Superplastic Behavior and Microstructure of 7475 Al Deformed in an External Electric Field,” in Superplasticity in Aerospace II (Warrendale, PA: TMS, to be published).

  55. P.G. Shewmon, Diffusion in Solids (New York: McGraw-Hill, 1963), p. 74.

    Google Scholar 

  56. R.A. Johnson, Diffusion (Metals Park, OH: ASM, 1973), p. 25.

    Google Scholar 

  57. A.A. Klypin, Metallov. i Termich. Obradbotra Metallov, 3 (1979), p. 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03220478.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H., Sprecher, A.F., Cao, W.D. et al. Electroplasticity—the effect of electricity on the mechanical properties of metals. JOM 42, 28–33 (1990). https://doi.org/10.1007/BF03221075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221075

Keywords

Navigation