Skip to main content
Log in

Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The Dsb family of redox proteins catalyzes disulfide bond formation and isomerization. Since mutations indsb genes change the conformation and stability of many extracytoplasmic proteins, and since many virulence factors of pathogenic bacteria are extracytoplasmic, inactivation ofdsb genes often results in pathogen attenuation. This study investigated the role of 2 membrane-bound oxidoreductases, DsbB and DsbI, in theCampylobacter jejuni oxidative Dsb pathway.Campylobacter mutants, lacking DsbB or DsbI or both, were constructed by allelic replacement and used in the human intestinal epithelial T84 cell line for the gentamicin protection assay (invasion assay) and chicken colonization experiments. InC. coli strain 23/1, the inactivation of thedsbB ordsbI gene separately did not significantly affect the colonization process. However, simultaneous disruption of both membrane-bound oxidoreductase genes significantly decreased the strain’s ability to colonize chicken intestines. Moreover,C. jejuni strain 81–176 with mutateddsbB ordsbI genes showed reduced invasion/intracellular survival abilities. No cells of the double mutants (dsbB dsbI ) ofC. jejuni 81–176 were recovered from human cells after 3 h of invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agudo D, Mendoza MT, Castanares C, Nombela C, Rotger R, 2004. A proteomic approach to studySalmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerase. Proteomics 4: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Bleumink-Pluym NM, Verschoor F, Gaastra W, van der Zeijst BA, Fry BN, 1999. A novel approach for the construction of aCampylobacter mutant library. Microbiology 145: 2145–2151.

    Article  CAS  PubMed  Google Scholar 

  • Carrillo CD, Taboada E, Nash JH, Lanthier P, Kelly J, Lau PC, et al. 2004. Genome-wide expression analyses ofCampylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence byflhA. J Biol Chem 279: 20327–20338.

    Article  CAS  PubMed  Google Scholar 

  • Dutton RJ, Boyd D, Berkmen M, Beckwith J, 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. PNAS USA 105: 11933–11938.

    Article  CAS  PubMed  Google Scholar 

  • Godlewska R, Dzwonek A, Mikula M, Ostrowski J, Pawlowski M, Bujnicki JM, et al. 2006.Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296: 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Grimshaw JP, Stirnimann CU, Brozzo MS, Malojcic G, Grutter MG, Capitani G, et al. 2008. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenicEscherichia coli. J Mol Biol 380: 667–680.

    Article  CAS  PubMed  Google Scholar 

  • Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW, 2007. Re-annotation and re-analysis of theCampylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162.

    Article  PubMed  CAS  Google Scholar 

  • Hendrixson DR, DiRita VJ, 2004. Identification ofCampylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL, 2009. DSB proteins and bacterial pathogenicity. Nat Rev 7: 215–225.

    Article  CAS  Google Scholar 

  • Hiniker A, Bardwell JC, 2004.In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279: 12967–12973.

    Article  CAS  PubMed  Google Scholar 

  • Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, et al. 2005.Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151: 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey T, O’Brien S, Madsen M, 2007. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117: 237–257.

    Article  PubMed  Google Scholar 

  • Inaba K, Murakami S, Nakagawa A, Iida H, Kinjo M, Ito K, et al. 2009. Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J 28: 779–791.

    Article  CAS  PubMed  Google Scholar 

  • Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ, 2008. Host-pathogen in-392 A.M. Łasica et al. teractions inCampylobacter infections: the host perspective. Clin Microbiol Rev 21: 505–518.

    Article  PubMed  Google Scholar 

  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL, 2001. JlpA, a novel surface-exposed lipoprotein specific toCampylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39: 1225–1236.

    Article  CAS  PubMed  Google Scholar 

  • Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, et al. 2006. Proteomic analysis ofCampylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bact 188: 4312–4320.

    Article  CAS  PubMed  Google Scholar 

  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW, 2004. TheCampylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150: 1957–1964.

    Article  CAS  PubMed  Google Scholar 

  • Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA, 1985. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152: 592–596.

    CAS  PubMed  Google Scholar 

  • Lasica AM, Jagusztyn-Krynicka EK, 2007. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol Rev 31: 626–636.

    Article  CAS  PubMed  Google Scholar 

  • Linton D, Lawson AJ, Owen RJ, Stanley J, 1997. PCR detection, identification to species level, and fingerprinting ofCampylobacter jejuni andCampylobacter coli direct from diarrheic samples. J Clin Microbiol 35: 2568–2572.

    CAS  PubMed  Google Scholar 

  • Macnab RM, 2003. How bacteria assemble flagella. Annu Rev Microbiol 57: 77–100.

    Article  CAS  PubMed  Google Scholar 

  • Malik-Kale P, Parker CT, Konkel ME, 2008. Culture ofCampylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bact 190: 2286–2297.

    Article  CAS  PubMed  Google Scholar 

  • Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, et al. 2004. An engineered pathway for the formation of protein disulfide bonds. Science 303: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  • Messens J, Collet JF, 2006. Pathways of disulfide bond formation inE. coli. Int J Biochem Cell Biol 38: 1050–1062.

    Article  CAS  PubMed  Google Scholar 

  • Monteville MR, Konkel ME, 2002. Fibronectin-facilitated invasion of T84 eukaryotic cells byCampylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70: 6665–6671.

    Article  CAS  PubMed  Google Scholar 

  • Monteville MR, Yoon JE, Konkel ME, 2003. Maximal adherence and invasion of INT 407 cells byCampylobacter jejuni requires the CadF outermembrane protein and microfilament reorganization. Microbiology 149: 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, et al. 2000. The genome sequence of the food-borne pathogenCampylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski M, Łasica AM, Jagusztyn-Krynicka EK, Bujnicki JM, 2009. AAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI family. Pol J Microbiol 58: 181–184.

    CAS  PubMed  Google Scholar 

  • Pei Z, Burucoa C, Grignon B, Baqar S, Huang XZ, Kopecko DJ, et al. 1998. Mutation in the peb1A locus ofCampylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect Immun 66: 938–943.

    CAS  PubMed  Google Scholar 

  • Raczko AM, Bujnicki JM, Pawlowski M, Godlewska R, Lewandowska M, Jagusztyn-Krynicka EK, 2005. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151: 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW, 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, et al. 2009. The CprS sensor kinase of the zoonotic pathogenCampylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71: 253–272.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Taylor DE, 1990. Chloramphenicol resistance inCampylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Watson RO, Galan JE, 2005. Signal transduction inCampylobacter jejuni-induced cytokine production. Cell Microbiol 7: 655–665.

    Article  CAS  PubMed  Google Scholar 

  • Watson RO, Galan JE, 2008.Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathogens 4: e14.

    Article  PubMed  CAS  Google Scholar 

  • Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, et al. 2005.Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73: 5278–5285.

    Article  CAS  PubMed  Google Scholar 

  • Wyszynska A, Raczko A, Lis M, Jagusztyn-Krynicka EK, 2004. Oral immunization of chickens with avirulentSalmonella vaccine strain carryingC. jejuni 72Dz/92cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-typeCampylobacter. Vaccine 22: 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Young KT, Davis LM, Dirita VJ, 2007.Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev 5: 665–679.

    Article  CAS  Google Scholar 

  • Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M, 2008.Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg 102: 123–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Jagusztyn-Krynicka.

Additional information

A. Łasica and A. Wyszyńska contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łasica, A.M., Wyszyńska, A., Szymanek, K. et al. Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens. J Appl Genet 51, 383–393 (2010). https://doi.org/10.1007/BF03208868

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208868

Keywords

Navigation