Skip to main content
Log in

Genetic mechanisms underlying male sex determination in mammals

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic control of gonadal development proceeds through either the male or female molecular pathways, driving bipotential gonadal anlage differentiation into a testis or ovary. Antagonistic interactions between the 2 pathways determine the gonadal sex. Essentially sex determination is the enhancement of one of the 2 pathways according to genetic sex. Initially, Sry with other factors upregulatesSox9 expression in XY individuals. Afterwards the expression ofSox9 is maintained by a positive feedback loop withFgf9 and prostaglandin D2 as well as by autoregulative ability of Sox9. If these factors reach high concentrations, then Sox9 and/or Fgf9 may inhibit the female pathway. Surprisingly, splicing, nuclear transport, and extramatrix proteins may be involved in sex determination. The male sex determination pathway switches on the expression of genes driving Sertoli cell differentiation. Sertoli cells orchestrate testicular differentiation. In the absence of Sry, the predomination of the female pathway results in the realization of a robust genetic program that drives ovarian differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams IR, McLaren A, 2002. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129: 1155–1164.

    CAS  PubMed  Google Scholar 

  • Albrecht KH, Eicher EM, 2001. Evidence thatSry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240: 92–107.

    Article  CAS  PubMed  Google Scholar 

  • Albrecht KH, Young M, Washburn LL, Eicher EM, 2003.Sry expression level and protein isoform differences play a role in abnormal testis development in C57BL/6J mice carrying certainSry alleles. Genetics 164: 277–288.

    CAS  PubMed  Google Scholar 

  • Alfi O, Donnell GN, Crandall BF, Derencsenyi A, Menon R, 1973. Deletion of the short arm of chromosome no.9 (46,9p-): a new deletion syndrome. Ann Genet 16: 17–22.

    CAS  PubMed  Google Scholar 

  • Argentaro A, Sim H, Kelly S, Preiss S, Clayton A, Jans DA, Harley VR, 2003. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J Biol Chem 278: 33839–33847.

    Article  CAS  PubMed  Google Scholar 

  • Bagheri-Fam S, Barrionuevo F, Dohrmann U, Gunther T, Schule R, Kemler R, et al. 2006. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporalSox9 expression pattern. Dev Biol 291: 382–397.

    Article  CAS  PubMed  Google Scholar 

  • Bagheri-Fam S, Sim H, Jayakody I, Taketo MM, Scherer G, Harley VR, 2008. Loss ofFgfr2 leads to partial XY sex reversal. Dev Biol 314: 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, et al. 1994. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G, 2006. Homozygous inactivation ofSox9 causes complete XY sex reversal in mice. Biol Reprod 74: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Bernard P, Sim H, Knower K, Vilain E, Harley, 2008. Human SRY inhibits β-catenin-mediated transcription. Int J Biochem Cell Biol 40: 2889–2900.

    Article  CAS  PubMed  Google Scholar 

  • Beverdam A, Koopman P, 2006. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 15: 417–431.

    Article  CAS  PubMed  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, et al. 2000. The LIM homeobox geneLhx9 is essential for mouse gonad formation. Nature 403: 909–913.

    Article  CAS  PubMed  Google Scholar 

  • Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, et al. 2000. A transgenic insertion upstream ofSox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26: 490–494.

    Article  CAS  PubMed  Google Scholar 

  • Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M, 1995. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 270: 18910–18916.

    Article  CAS  PubMed  Google Scholar 

  • Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, Hammarskjold ML, 2006. The Wilms’ tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Gene Dev 20: 1597–1608.

    Article  CAS  PubMed  Google Scholar 

  • Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM, 2005. Gonadal sex reversal in mutantDax1 XY mice: a failure to upregulateSox9 in pre-Sertoli cells. Development 132: 3045–3054.

    Article  CAS  PubMed  Google Scholar 

  • Bouma GJ, Washburn LL, Albrecht KH, Eicher EM, 2007. Correct dosage ofFog2 andGata4 transcription factors is critical for fetal testis development in mice. Proc Natl Acad Sci USA 104: 14994–14999.

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Capel B, 2004. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5: 509–521.

    Article  CAS  PubMed  Google Scholar 

  • Breyer MD, Breyer RM, 2001. G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 63: 579–605.

    Article  CAS  PubMed  Google Scholar 

  • Bullejos M, Koopman P, 2001. Spatially dynamic expression ofSry in mouse genital ridges. Dev Dyn 221: 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Bullejos M, Koopman P, 2005. DelayedSry andSox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Dev Biol 278: 473–481.

    Article  CAS  PubMed  Google Scholar 

  • Canning C, Lovell-Badge R, 2002.Sry and sex determination: how lazy can it be? Trends Genet 18: 111–113.

    Article  CAS  PubMed  Google Scholar 

  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. 1993. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  • Chaboissier MC, Kobayashi A, Vidal VI, Lutzkendorf S, van de Kant HJ, Wegner M, et al. 2004. Functional analysis ofSox8 andSox9 during sex determination in the mouse. Development 131: 1891–1901.

    Article  CAS  PubMed  Google Scholar 

  • Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM, 2001. Male-to-female sex reversal in mice licking fibroblast growth factor 9. Cell 104: 875–889.

    Article  CAS  PubMed  Google Scholar 

  • Cousineau AJ, Higgins JV, Hackel E, Waterman DF, Toriello H, Carlile PA, Cook PJL, 1981. Cytogenetic recognition of chromosomal duplication [dup(1)(p31..4 leads to p22.1)] and the detection of three different alleles at the PGM1 locus. Ann Hum Genet 45: 337–340.

    Article  CAS  PubMed  Google Scholar 

  • DeFalco TJ, Verney G, Jenkins AB, McCaffery JM, Russell S, Van Doren M, 2003. Sex-specific apoptosis regulates sexual dimorphism in theDrosophila embryonic gonad. Dev Cell 5: 205–216.

    Article  CAS  PubMed  Google Scholar 

  • De Grandi A, Calvari V, Bertini V, Bulfone A, Peverali G, Camerino G, et al. 2000. The expression pattern of a mouse doublesex-related gene is consistent with a role in gonadal differentiation. Mech Dev 90: 323–326.

    Article  PubMed  Google Scholar 

  • de Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Südbeck P, et al. 1998. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol Cell Biol 18: 6653–6665.

    PubMed  Google Scholar 

  • de Santa Barbara P, Mejean C, Moniot B, Malcles MH, Berta P, Boizet-Bonhoure B, 2001. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 64: 775–783.

    Article  PubMed  Google Scholar 

  • de Santa Barbara P, Moniot B, Poulat F, Berta P, 2000. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn 217: 293–298.

    Article  PubMed  Google Scholar 

  • Eicher E M, Washburn LL, Schork NJ, Lee BK, Shown EP, Xu X, et al. 1996. Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6J-YPOS sex reversal. Nat Genet 14: 206–209.

    Article  CAS  PubMed  Google Scholar 

  • Eicher EM, Washburn LL, Whitney IJ, Morrow KE, 1982.Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217: 535–537.

    Article  CAS  PubMed  Google Scholar 

  • Elejalde BR, Opitz JM, de Elejade MM, Gilbert EF, Abellera M, Meisner L, et al. 1984. Tandem dup (1p) within the short arm of chromosome 1 in a child with ambiguous genitalia and multiple congenital anomalies. Am J Med Genet 17: 723–730.

    Article  CAS  PubMed  Google Scholar 

  • Flejter WL, Fergestad J, Gorski J, Varvill T, Chandrasekharappa S, 1998. A gene involved in XY sex reversal is located on chromosome 9, distal to marker D9S1779. Am J Hum Genet 63: 794–802.

    Article  CAS  PubMed  Google Scholar 

  • Fleming A, Vilain E, 2004. The endless quest for sex determination genes. Clin Genet 67: 15–25.

    Article  Google Scholar 

  • Ford CE, 1970. Genetic activity of sex chromosomes in genital cells. Phil Trans Roy Soc Lond B 259: 53–55.

    Article  CAS  Google Scholar 

  • Forwood J, Harley V, Jans D, 2001. The C-terminal nuclear localization signal of the sex determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 276: 46575–46582.

    Article  CAS  PubMed  Google Scholar 

  • Gasca S, Canizares J, De Santa Barbara P, Mejean C, Poulat F, Berta P, Boizet-Bouhoure B, 2002. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci USA 99: 11199–11204.

    Article  CAS  PubMed  Google Scholar 

  • Giese K, Pagel J, Grosschedl R, 1994. Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 91: 3368–3372.

    Article  CAS  PubMed  Google Scholar 

  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Hacker A, Capel B, Goodfellow P, Lovell-Badge R, 1995. Expression ofSry, the mouse sex determining gene. Development 121: 1603–1614.

    CAS  PubMed  Google Scholar 

  • Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. 2001. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106: 319–329.

    Article  CAS  PubMed  Google Scholar 

  • Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortes L, et al. 2000. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91: 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Harley VR, Layfield S, Mitchell CL, Forwood JK, John AP, Briggs LJ, et al. 2003. Defective importin beta recognition and nuclear import of the sex determining factor SRY are associated with XY sex-reversing mutations. Proc Natl Acad Sci USA 100: 7045–7050.

    Article  CAS  PubMed  Google Scholar 

  • Harley VR, Lovell-Badge R, Goodfellow PN, 1994. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22: 1500–1501.

    Article  CAS  PubMed  Google Scholar 

  • Harley VR, Lovell-Badge R, Goodfellow PN, Hextall PJ, 1996. The HMG box of SRY is a calmodulin binding domain. FEBS Lett 391: 4–28.

    Article  Google Scholar 

  • Hossain A, Saunders GF, 2001. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276: 16817–16823.

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Wang S, Ning Y, Lamb AN, Bartley J, 1999. Autosomal XX sex reversal caused by duplication ofSOX9. Am J Med Genet 87: 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Takeda Y, Shikayama T, Mukai T, Hisano S, Morohashi KI, 2001. Comparative localization of DAX-1 and Ad4BP/SF-1 during development of the hypothalamic-pituitary-gonadal axis suggests their closely related and distinct functions. Dev Dyn 220: 363–376.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yu R, Jameson JL, 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 17: 1476–1483.

    CAS  PubMed  Google Scholar 

  • Jeays-Ward K, Dandonneau M, Swain A, 2004.Wnt4 is required for proper male as well as female sexual development. Dev Biol 276: 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A, 2003. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130: 3663–3670.

    Article  CAS  PubMed  Google Scholar 

  • Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E, 2003.Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci USA 100: 10866–10871.

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Koopman P, 1999. Structural and functional characterization of the mouseSox9 promoter: implications for campomelic dysplasia. Hum Mol Genet 8: 691–696.

    Article  CAS  PubMed  Google Scholar 

  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T, 1998. Male to female sex reversal inM33 mutant mice. Nature 393: 688–692.

    Article  CAS  PubMed  Google Scholar 

  • Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P, 1996. A male-specific role forSOX9 in vertebrate sex determination. Development 122: 2813–2822.

    CAS  PubMed  Google Scholar 

  • Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, Taya C, et al. 2005. Influence on spatiotemporal patterns of a male-specificSox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol 278: 511–525.

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B, 2007. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci USA 104: 16558–16563.

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, et al. 2006.Fgf9 andWnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4 e187.

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R, 1991. Male development of chromosomally female mice transgenic forSry. Nature 351: 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Kriedberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, 1993.Wt-1 is required for early kidney development. Cell 74: 679–691.

    Article  Google Scholar 

  • Li B, Zhang W, Chan G, Jancso-Radek A, Liu S, Weiss M, 2001. Human sex reversal due to impaired nuclear localization of SRY-A clinical correlation. J Biol Chem 276: 46480–46484.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Philibert P, Ferraz-de-Souza B, Kelberman D, Homfray T, Albanese A, et al. 2007. Heterozygous mis sense mutations in steroidogenic factor 1 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J Clin Endocrinol Metab 92: 991–999.

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker K, 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Mejean C, et al. 2005. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J 24: 1798–1809.

    Article  CAS  PubMed  Google Scholar 

  • Manuylov NL, Fujiwara Y, Adameyko II, Poulat F, Tevosian SG, 2007. The regulation ofSox9 gene expression by the GATA4/FOG2 transcriptional complex in dominant XX sex reversal mouse models. Dev Biol 307: 356–367.

    Article  CAS  PubMed  Google Scholar 

  • McElreavey K, Vilain E, Abbas E, Herskowitz I, Fellous M, 1993. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci USA 90: 3368–3372.

    Article  CAS  PubMed  Google Scholar 

  • Meeks JJ, Weiss J, Jameson JL, 2003.Dax1 is required for testis determination. Nat Genet 34: 32–33.

    Article  CAS  PubMed  Google Scholar 

  • Menke DB, Page DC, 2002. Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns 2: 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS, 2008. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Dev Biol 9: 44.

    Google Scholar 

  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S, 1997. Defects of urogenital development in mice lackingEmx2. Development 124: 1653–1664.

    CAS  PubMed  Google Scholar 

  • Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, et al. 2003. Dax-1 promoter is stimulated by SF-1 (steroidogenic factor-1) and inhibited by COUP-TF (chicken ovoalbumin upstream promoter-transcription factor) via a composite nuclear receptor-regulatory element. Mol Endocrinol 12: 1010–1022.

    Google Scholar 

  • Mohammed FM, Farag TI, Gunawardana SS, al-Digashim DD, al-Awadi SA, al-Othaman A, Sundareshan TS, 1989. Direct duplication of chromosome 1, dir dup(1) (p21.2-p32) in Bedouin boy with multiple congenital anomalies. Am J Med Genet 32: 353–355.

    Article  CAS  PubMed  Google Scholar 

  • Moniot B, Berta P, Scherer G, Sudbeck P, Poulat F, 2000. Male-specific expression suggests role of DMRT1 in human sex determination. Mech Dev 91: 323–325.

    Article  CAS  PubMed  Google Scholar 

  • Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R, 1996.Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14: 62–68.

    Article  Google Scholar 

  • Nachtigal MW, Hirokawa Y, Enyeart-van Houten DL, Flanagan JN, Hammer GD, Ingraham HA, 1998. Wilms’ tumor 1 and Dax1 modulate the orphan nuclear receptor SF1 in sex-specific gene expression. Cell 93: 445–454.

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, et al. 2005. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287: 361–377.

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, Parada LF, 2003. Testis determination requires insulin receptor family function in mice. Nature 426: 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Li Y, Lau YF, 2005. Sry associates with the heterochromatin protein 1 complex by interacting with a KRAB domain protein. Biol Reprod 72: 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Ohe K, Lalli E, Sassone-Corsi P, 2002. A direct role of SRY and SOX proteins in pre-mRNA splicing. Proc Natl Acad Sci USA 99: 1146–1151.

    Article  CAS  PubMed  Google Scholar 

  • Palmer SJ, Burgoyne PS, 1991. In situ analysis of fetal, prepubertal and adult XX/XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112: 265–268.

    CAS  PubMed  Google Scholar 

  • Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J, Hammer GD, Jameson JL, 2005. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 132: 2415–2423.

    Article  CAS  PubMed  Google Scholar 

  • Parma P, Pailhoux E, Cotinot C, 1999. Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol Reprod 61: 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. 2006. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38: 1304–1309.

    Article  CAS  PubMed  Google Scholar 

  • Payen E, Pailhoux E, Abou Mehri R, Gianquinto L, Kirszenbaum M, et al. 1996. Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. Int J Dev Biol 40: 567–575.

    CAS  PubMed  Google Scholar 

  • Phillips NB, Jancso-Radek A, Ittah V, Singh R, Chan G, Haas E, Weiss MA, 2006. SRY and human sex determination: the basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. J Mol Biol 358: 172–192.

    Article  CAS  PubMed  Google Scholar 

  • Pilon N, Daneau I, Paradis V, Hamel F, Lussier JG, Viger RS, Silversides DW, 2003. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 68: 1098–1106.

    Article  CAS  PubMed  Google Scholar 

  • Polanco JC, Koopman P, 2007.Sry and the hesitant beginnings of male development. Dev Biol 302: 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi ME, 1994. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 13: 6115–6124.

    CAS  PubMed  Google Scholar 

  • Poulat F, de Santa Barbara P, DesclozeauxM, Soullier S, Moniot B, Bonneaud N, 1997. The human testis-determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J Biol Chem 272: 7167–7172.

    Article  CAS  PubMed  Google Scholar 

  • Poulat F, Girard F, Chevron MP, Gozé C, Rebillard X, Calas B, et al. 1995. Nuclear localization of the testis-determining gene product SRY. J Cell Biol 128: 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Kong L, Poirier C, Truong C, Overbeek PA, Bishop CE, 2004. Long-range activation ofSox9 inOdd Sex (Ods) mice. Hum Mol Genet 13: 1213–1218.

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Bishop CE, 2005.Sox9 is sufficient for functional testis development producing fertile male mice in the absence ofSry. Hum Mol Genet 14: 1221–1229.

    Article  CAS  PubMed  Google Scholar 

  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarcower D, 1999. Expression ofDmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215: 208–220.

    Article  CAS  PubMed  Google Scholar 

  • Raymond C, Murphy M, O’Sullivan M, Bardwell V, Zarkower D, 2000.Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14: 2587–2595.

    Article  CAS  PubMed  Google Scholar 

  • Rossi P, Dolci S, Albanesi C, Grimaldi P, Geremia R, 1993. Direct evidence that the mouse sex-determining geneSry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Mol Reprod Dev 34: 369–373.

    Article  CAS  PubMed  Google Scholar 

  • Salas-Cortes L, Jaubert F, Barbaux S, Nassmann C, Bono MR, Fellous M, et al. 1999. The human SRY protein is present in fetal and adult Sertoli cells and germ cells. Int J Dev Biol 43: 135–140.

    CAS  PubMed  Google Scholar 

  • Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B, 2004.Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131: 3627–3636.

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Bar I, Narvaez V, Penny G, Lovell-Badge R, 2004.SOX9 is up-regulated by the transient expression ofSRY specifically in Sertoli cell precursors. Dev Biol 274: 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R, 2008. Sex determination involves synergistic action of SRY and SF1 on a specificSox9 enhancer. Nature 453: 930–934.

    Article  CAS  PubMed  Google Scholar 

  • Shen JH, Ingraham HA, 2002. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol 16: 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura R, Fraizer GC, Trapman J, Lau YfC, Saunders GF, 1997. The Wilms’ tumor gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Müllerian-inhibiting substance, and the androgen receptor. Clin Cancer Res 3: 2571–2580.

    CAS  PubMed  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Koopman PA, 2004. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet 20: 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH, 1999. Conservation of a sex-determining gene. Nature 402: 601–602.

    Article  CAS  PubMed  Google Scholar 

  • Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R, 1998.Dax1 antagonizesSry action in mammalian sex determination. Nature 391: 761–767.

    Article  CAS  PubMed  Google Scholar 

  • Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G, 1996. MouseDax-1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12: 404–409.

    Article  CAS  PubMed  Google Scholar 

  • Taketo T, Lee CH, Zhang J, Li Y, Lee CY, Lau YF, 2005. Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev Dyn 233: 612–622.

    Article  CAS  PubMed  Google Scholar 

  • Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH, 2002. Gonadal differentiation, sex determination and normal Sry expres sion in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129: 4627–4634.

    CAS  PubMed  Google Scholar 

  • Thevenet L, Albrecht KH, Malki S, Berta P, Boizet-Bonhoure B, Poulat F, 2005. NHERF2 /SIP-1 interacts with mouse SRY via a different mechanism than human SRY. J Biol Chem 280: 38625–38630.

    Article  CAS  PubMed  Google Scholar 

  • Thevenet L, Mejean C, Moniot B, Bonneaud N, Galeotti N, Aldrian-Herrada G, et al. 2004. Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 23: 3336–3345.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay JJ, Viger RS, 2001. Nuclear receptor Dax-1 represses the transcriptonal cooperation between GATA-4 and SF-1 in Sertoli cells. Biol Reprod 64: 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  • Urade Y, Eguchi N, 2002. Lipocalin-type and hematopoietic prostaglandin D synthases as a novel example of functional convergence. Prostagland. Other Lipid Mediat 68–69: 375–382.

    Article  Google Scholar 

  • Urade Y, Hayaishi O, 2000. Biochemical, structural, genetic, physiological, and pathophy siological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 1482: 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Veitia R, Nunes M, Brauner R, Doco-Fenzy M, Joanny-Flinois O, Jaubert F, et al. 1997. Deletions of distal 9p associated with 46, XY male to female sex reversal: definition of the breakpoints at 9p23.3–p24.1. Genomics 41: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Veitia RA, Nunes M, Quintana-Murci L, Rappaport R, Thibaud E, Jaubert F, et al. 1998. Swyer syndrome and 46,XY partial gonadal dysgenesis associated with 9p deletions in the absence of monosomy-9p syndrome. Am J Hum Genet 63: 901–905.

    Article  CAS  PubMed  Google Scholar 

  • Vidal VP, Chaboissier MC, de Rooij DG, Schedl A, 2001.Sox9 induces testis development in XX transgenic mice. Nat Genet 28: 216–217.

    Article  CAS  PubMed  Google Scholar 

  • Werner MH, Bianchi ME, Gronenborn AM, Clore GM, 1995. NMR spectroscopic analysis of the DNA conformation induced by the human testis-determining factor SRY. Biochemistry 34: 11998–12004.

    Article  CAS  PubMed  Google Scholar 

  • Wieacker P, Missbach D, Jakubiczka S, Borgmann S, Albers N, 1996. Sex reversal in a child with karyotype 46, XY, dup (1) (p22.3p32.3). Clin Genet 49: 271–273.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, 2007a. R-spondin1 — discovery of the long-missing, mammalian female-determining gene? BioEssays 29: 314–318.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P, 2007b. SOX9 regulates prostaglandin D synthase gene transcriptionin vivo to ensure testis development. J Biol Chem 282: 10553–10560.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, et al. 2005. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signalling during mammalian sex determination. Dev Biol 287: 111–124.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Palmer S, Koopman P, 2007c. Sex determination and gonadal development in mammals. Physiol Rev 87: 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A, 1998.Deletionoflong-rangeregulatory elements upstream ofSOX9 causes campomelic dysplasia. Proc Natl Acad Sci USA 95: 10649–10654.

    Article  CAS  PubMed  Google Scholar 

  • Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL, 1998. Role ofAhch in gonadal development and gametogenesis. Nat Genet 20: 353–357.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Piprek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piprek, R.P. Genetic mechanisms underlying male sex determination in mammals. J Appl Genet 50, 347–360 (2009). https://doi.org/10.1007/BF03195693

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195693

Keywords

Navigation