Skip to main content
Log in

Investigation on the respiratory airflow in human airway by PIV

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The creation of the accurate transparent flow passage is essential to analyze the flow inward a geometrically complex flow passage like human airway by PIV. We established the procedure to create a transparent box containing a model of the human airway for PIV measurements. A flow passage includes the whole human upper airway, nasal cavities, larynx, trachea, and 2 generations of bronchi. The phase averaged mean and RMS velocity distributions in sagittal and coronal planes are obtained for 7 phases in a respiratory period by tomographic PIV. Some physiologic conjectures are obtained. The main stream went through the backside of larynx and trachea in inspiration and the frontal side in expiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, K.H., Cheng, Y.S., Yeh, H.C., Swift, D.L., (1997) Measurements of Airway Dimensions and Calculation of Mass Transfer Characteristics of the Human Oral Passage, Trans. ASME, Vol. 119, 476–482

    Article  Google Scholar 

  • Chung, S.K., Son, Y. R., Shin, S.J., Kim, S.K., (2006) Nasal airflow during respiratory cycle, American J. Rhinology, Vol. 20, No. 4, 379–384

    Article  Google Scholar 

  • Chung, S.K., Kim, S.K., (2008) Digital particle image velocimetry studies of nasal airflow, Respiratory Physiology & Neurobiology, Vol. 163, 111–120

    Article  Google Scholar 

  • Comer, J.K., Kleinstreuer, C., Zhang, Z., (2001) Flow structures and particle deposition patterns in double-bifurcation airway models, J. Fluid Mech., Vol. 435, 25–54

    MATH  Google Scholar 

  • Doorly, D.J., Franke, V., Gambarruto, A., Taylor, D.J., Schroter, R.C. (2006) Nasal airflow: computational and experimental modeling, 5th World congress of Biomechanics, Munich, S270

  • Hart D.P., “PIV error correction”, Experiments in Fluids 29 (2000) 13.

    Article  Google Scholar 

  • Heeman, A.F., Matida, E., Pollard, A., Finlay, W.H., (2003) Experimental measurements and computational modeling of the flow field in an idealized human oropharynx, Experiments in Fluids, Vol. 35, 70–84

    Article  Google Scholar 

  • Hess, M.M., Lampercht, J., Horlitz, S. (1992) Experimentelle Untersuchung der Strombahnen in der Nasenhaupthoehle des Menschen am Nasen-Modell, Laryngo-Rhino-Otol. 71, 468–471

    Article  Google Scholar 

  • Hopkins, L.M., Kelly, J.T., Wexler, A.S., Prasad, A.K. (2000), “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95

    Article  Google Scholar 

  • Johnstone, A., Uddin, M., Pollard, A., Heeman, W.H., Finlay, (2004) The flow inside an idealized form of the human extra-thoracic airway, Experiments in Fluids, Vol. 37, 673–689

    Article  Google Scholar 

  • Kim, J.S., Sung, J., Kim, S., Kim, J.S., (2008) PIV Measurements on the Charge of the Three-Dimensional Wake Structures by an Air Spoiler of a Road Vehicle, Journal of Visualization,Vol. 11, No. 1, 45–54.

    Article  Google Scholar 

  • Kim, S.K., (2001) An Experimental Study of Developing and Fully Developed Flows in a Wavy Channel by PIV, KSME international journal, Vol. 15, No. 12, 1853–1859

    Google Scholar 

  • Kim, S.K., Son, Y.R., (2002) Particle Image Velocimetry Measurements in Nasal Airflow, Trans. KSME B, Vol. 26, No. 6, 566–569.

    Google Scholar 

  • Kim, S.K., Huh, J.R., (2004) An Investigation on Airflow in Abnormal Nasal Cavity by PIV, Journal of Visualization, Vol. 6 No. 4, 274–281

    Google Scholar 

  • Kim, S.K., Son, Y.R., (2004) An Investigation on Airflows in Abnormal Nasal Cavity with Adenoid Vegetation by Particle Image Velocimetry, KSME International Journal, Vol. 18, No. 10. 1799–1808

    MathSciNet  Google Scholar 

  • Kim, S.K., Son, Y.R., (2004) An Investigation on Airflow in disordered nasal cavity and its corrected models by tomographic PIV, Measurement Science and Technology, Vol.15, 1090–1096

    Article  Google Scholar 

  • Kim, S.K., Shin, S.J., (2005) The experimental research on periodic airflow in human nasal cavity, Trans. KSME B, Vol. 29, No. 1, 103–109.

    MathSciNet  Google Scholar 

  • Kim, S.K., Chung, S.K., (2006): An investigation on oscillatory airflow in human airway during nose breathing by tomographic PIV, Proc. 5th World congress of Biomechanics, Munich, Journal of Biomechanics Vol.39, S271

    Google Scholar 

  • Kleven, M., Melaaen, M.C., Reimers, M., Djupesland, P.G. (2006): Computational Modeling of nasal aerodynamics, 5th World congress of Biomechanics, Munich, S271

  • Lee,S.J., Jang,Y.G., Choi,Y.S. Ha,W.P. (2008) Dynamic PIV Measurement of a High-Speed Flow Issuing from Vent-Holes of a Curtain-Type Airbag, Journal of Visualization, Vol. 11, No. 3, 239–246.

    Article  Google Scholar 

  • Lee, W.J., Kawahashi, M., Hirahara, H., (2006) Experimental investigation of oscillatory air flow in a bronchial tube model with HFOV mode, Journal of Visualization, Vol. 9 No. 1, 39–48

    Article  Google Scholar 

  • Liu, Y., So, R.M.C., Zhang, C.H., (2003) Modeling the bifurcating flow in an asymmetric human lung airway, J. Biomech., Vol. 36, 951–959

    Article  Google Scholar 

  • Scherer, P.,W., Hahn, I.I., Mozell ,M.M. 1989, “The Biophysics of Nasal Airflow”, Otol. Clinics N. Ame. Vol. 22, No. 2, April, 265-278

  • Taylor, D.J., Dooley, D.J., Schroter, R.C., (2006) Airflow in the human nasal cavity, 5th World congress of Biomechanics, Munich, S272

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. K..

Additional information

Sung Kyun Kim: He received his MSE in Naval Architecture in 1982 from Seoul National University. He also received his PhD in Naval Architecture and Marine Engineering in 1988 from University of Michigan, Ann Arbor. He visited the department of mechanical engineering, University of California, Berkeley as a visiting professor in 1997. He works in the Department of Mechanical Engineering, Konkuk University, Seoul, Korea as a professor since 1988. He is now a dean of the College of Engineering, Konkuk University. His research interests are Flow Visualization, PIV, Bio-medical Engineering, Airflow in Roll-to-roll system, Flow Induced Vibration and Streaming Flow.

Seung Kyu Chung: He graduated the Yonsei University College of Medicine on 1980. He finished his Otolaryngology residency training at Yonsei University Medical Center, Seoul, Korea and got Korean board of Otolaryngology on 1984. He received his PhD at Yonsei University Postgraduate School in 1989. He is working as rhinologist at the Department of Otorhinolaryngology, Head and Neck Surgery, Samsung Medical Center, Seoul, Korea since 1994. His research interests are anatomy, 3D reconstruction and air flow of the nasal cavity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.K., Chung, S.K. Investigation on the respiratory airflow in human airway by PIV. J Vis 12, 259–266 (2009). https://doi.org/10.1007/BF03181864

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03181864

Keywords

Navigation