Skip to main content
Log in

Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution

  • Review Article
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

It has been postulated that life originated in a similar environment to those of deep sea hydrothermal vents. These environments are located along volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pressure), chemical toxicity, and absence of photosynthesis. However, numerous living organisms have been discovered in these hostile environments, including a variety of microorganisms and many animal species which live in intimate and complex symbioses with sulfo-oxidizing and methanotrophic bacteria. Recent proteomic analyses of the endosymbiont ofRiftia pachyptila and genome sequences of some free living and symbiotic bacteria have provided complementary information about the potential metabolic and genomic capacities of these organisms. The evolution of these adaptive strategies is connected with different mechanisms of genetic adaptation including horizontal gene transfer and . various structural and functional mutations. Therefore, the organisms in this environment are good models for studying the evolution of prokaryotes and eukaryotes as well as different aspects of the biology of adaptation. This review describes some current research concerning metabolic and plausible genetic adaptations of organisms in a deep sea environment, usingRiftia pachyptila as model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arp, A.J., Doyle, M.L., Di Cera, E., and Gill, S.J. 1990. Oxygenation properties of the two co-occurring hemoglobins of the tube wormRiftia pachyptila.Respiratory Physiology 80: 323–334.

    Article  CAS  Google Scholar 

  • Baross, J.A. and Hoffman, S.E. 1985. Submarine hydrothermal vent and associated gradient environment as sites for the origin and evolution of life.Origins of Life 15: 327–345.

    Article  CAS  Google Scholar 

  • Beynon, J.D., MacRae, I.J., Huston, S.L., Nelson, D.C., Segel, I.H., and Fisher, A.J. 2001. Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubewormRiftia pachyptila.Biochemistry 40: 14509–14517.

    Article  CAS  PubMed  Google Scholar 

  • Black, M.B., Halanych, K. Maas, P. Hoeh, W.R., Hashimoto, J., Desbruyeres, D., Lutz, R., and Vrijenhoek, R.C. 1997. Molecular systematics of deep-sea tube worms (Vestimentifera).Marine Biology 130: 141–149.

    Article  CAS  Google Scholar 

  • Bright, M. and Giere, O. 2005. Microbial symbiosis in Annelida.Symbiosis 38: 1–45.

    Google Scholar 

  • Bright, M., Keckeis, H., and Fisher, C.R. 2000. An autoradiographic examination of carbon fixation, transfer and utilization in theRiftia pachyptila symbiosis.Marine Biology 136: 621–632.

    Article  Google Scholar 

  • Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W., and Waterbury, J.B. 1981. Procaryotic cells in the hydrothermal vent tube wormRiftia pachyptila Jones: Possible chemoautotrophic symbionts.Science 213: 340–342.

    Article  CAS  PubMed  Google Scholar 

  • Childress, J.J. and Fisher, C.R. 1992. The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbiosis.Oceanography and Marine Biology: An Annual Review 30: 337–441.

    Google Scholar 

  • Claverys, J.P., Prudhomme, M., and Martin, B. 2006. Induction of competence regulons as a general response to stress in grampositive bacteria.Annual Review of Microbiology 60: 451–475.

    Article  CAS  PubMed  Google Scholar 

  • Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen, R.P.V., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Andel, T.H. 1979. Submarine thermal spring on the Galapagos Rift.Science 203: 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  • Cunchillos, C. and Lecointre, G. 2007. Metabolic pathways exhibit structures resulting from an evolutionary.Biochimie 89: 555–573.

    Article  CAS  PubMed  Google Scholar 

  • Dale, C. and Moran, N.A. 2006. Molecular interactions between bacterial symbionts and their hosts.Cell 126: 453–465.

    Article  CAS  PubMed  Google Scholar 

  • Desbruyères, D., Segonzac, M., and Bright, M. 2006.Handbook of Deep-Sea Hydrothermal Vent Fauna. 2ed. Oberösterreichische Landesmuseen, Linz, Austria, 544 pp.

    Google Scholar 

  • Embley, T.M. and Martin, W. 2006. Eukaryotic evolution, changes and challenges.Nature 440: 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Eppinger, M., Baar, C., Raddatz, G., Huson, D.H., and Schuster, S.C. 2004. Comparative analysis of four campylobacterales.Nature Reviews Microbiology 2: 872–885.

    Article  CAS  PubMed  Google Scholar 

  • Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube wormRiftia pachyptila Jones (Vestimentifera).Science 213: 336–338.

    Article  CAS  PubMed  Google Scholar 

  • Felbeck, H. 1985. CO2 fixation in the hydrothermal vent tube wormRiftia pachyptila (Jones).Physiological Zoology 58: 272–281.

    Google Scholar 

  • Felbeck, H., Childress, J.J., and Somero, G.N. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide rich environment habitats.Nature 293: 291–293.

    Article  CAS  Google Scholar 

  • Fiala-Médioni, A., Métivier, C., Herry, A., and Le Pennec, M. 1986. Ultrastructure of the gill of the hydrothermal-vent mytilidBathymodiolus sp.Marine Biology 92: 65–72.

    Article  Google Scholar 

  • Fisher, C.R. 1996. Chemoautotrophic and methanotrophic symbioses in marine invertebrates.Aquatic Sciences 2: 399–436.

    Google Scholar 

  • Fry, I. 2006. The origins of research into the origins of life.Endeavour 30: 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Gaill, F. 1993. Aspects of life development at deep sea hydrothermal vents.The FASEB Journal 7: 558–565.

    CAS  PubMed  Google Scholar 

  • Geslin, C., Gaillard, M., Flament, D., Rouault, K., Le Romancer, M., Prieur, D., and Erauso, G. 2007. Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated fromPyrococcus abyssi.Journal of Bacteriology 189: 4510–4519.

    Article  CAS  PubMed  Google Scholar 

  • Girguis, P.R., Lee, R.W., Desaulniers, N., Childress, J.J., Pospesel, M., Felbeck, H., and Zal, F. 2000. Fate of nitrate acquired by the tubewonnRiftia pachyptila.Applied and Environmental Microbiology 66: 2783–2790.

    Article  CAS  PubMed  Google Scholar 

  • Goffredi, S.K., Childress, J.J., Desaulniers, N.T., and Lallier, F.J. 1997. Sulfide acquisition by the vent wormRiftia pachyptila appears to be via uptake of HS, rather than H2S.Journal of Experimental Biology 200: 2609–2616.

    CAS  PubMed  Google Scholar 

  • Haldane, J.B.S. 1954. The Origin of Life.The New Biology 16: 12–27.

    Google Scholar 

  • Hastings, P.J. 2007. Adaptive amplification.Critical Reviews in Biochemistry and Molecular Biology 42: 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Hentschel, U. and Felbeck, H. 1993. Nitrate respiration in the hydrothermal vent tubewormRiftia pachyptila.Nature 366: 338–340.

    Article  CAS  Google Scholar 

  • Hervé, G. and Minic, Z. 2007. Enzyme distribution and metabolite exchange in the symbiosis between the deep-sea tube worm,Riftia pachyptila, and its bacterial endosymbiont.Symbiosis 44: 159–165.

    Google Scholar 

  • Hilário, A., Young, C.M., and Tyler, P.A. 2005. Sperm storage, internal fertilization, and embryonic dispersal in vent and seep tubeworms (Polychaeta: Siboglinidae: Vestimentifera).Biological Bulletin 208: 20–28.

    Article  PubMed  Google Scholar 

  • Holland, H.D. 1984.The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ, 582 pp.

    Google Scholar 

  • Huber, C. and Wächterhäuser, G. 1998. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life.Science 281: 670–672.

    Article  CAS  PubMed  Google Scholar 

  • Huber, C. and Wächtershäuser, G. 2006. alpha-Hydroxy and alpha-amino acids under possible Hadean, volcanic origin-of-life conditions.Science 314: 630–632.

    Article  CAS  PubMed  Google Scholar 

  • Hueck, C.J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants.Microbiology and Molecular Biology Reviews 62: 379–433.

    CAS  PubMed  Google Scholar 

  • Hurtado, L.A., Mateos, M., Lutz, R.A., and Vrijenhoek, R.C. 2003. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clamCalyptogena magnifica.Applied and Environmental Microbiology 69: 2058–2064.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R., Rivera, M.C., and Lake, J.A. 1999. Horizontal gene transfer among genomes: the complexity hypothesis.Proceedings of the National Academy of Sciences, USA 96: 3801–3806.

    Article  CAS  Google Scholar 

  • Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M., and Beehler, C.L. 1988. Chemical and biological interactions in the Rose Garden hydrothermal vent field.Deep-Sea Research 35: 1723–1744.

    Article  Google Scholar 

  • Jones, M.L. and Gardiner, S.L. 1988. Evidence for a transient digestive tract in Vestimentifera.Proceedings of the Biological Society of Washington 101: 423–433.

    Google Scholar 

  • Joyce, G. 1988. Hydrothermal vents too hot?Nature 334: 564.

    Article  Google Scholar 

  • Kang, J. and Blaser, M.J. 2006. Bacterial populations as perfect gases: Genomic integrity and diversification tensions inHelicobacter pylori.Nature Reviews Microbiology 4: 826–836.

    Article  CAS  PubMed  Google Scholar 

  • Kooi, B.W. and Troost, T. 2006. Advantages of storage in a fluctuating environment.Theoretical Population Biology 70: 527–541.

    Article  CAS  PubMed  Google Scholar 

  • Kooijman, S.A.L.M. 2000.Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 446 pp.

    Google Scholar 

  • Koonin, E.V., Makarova, K.S., and Aravind, L. 2001. Horizontal gene transfer in prokaryotes: quantification and classification.Annual Review of Microbiology 55: 709–742.

    Article  CAS  PubMed  Google Scholar 

  • Kraft, C. and Suerbaum, S. 2005. Mutation and recombination inHelicobacter pylori: mechanisms and role in generating strain diversity.International Journal of Medical Microbiology 295: 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara, H., Yoshida, T., Takaki, Y., Shimamura, S., Nishi, S., Harada, M., Matsuyama, K., Takishita, K., Kawato, M., Uematsu, K., Fujiwara, Y., Sato, T., Kato, C., Kitagawa, M., Kato, I., and Maruyama, T. 2007. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam,Calyptogena okutanii.Current Biology 17: 881–886.

    Article  CAS  PubMed  Google Scholar 

  • Lake, J.A., Jain, R., and Rivera, M.C. 1999. Mix and match in the tree of life.Science 283: 2027–2028.

    Article  CAS  PubMed  Google Scholar 

  • Lallier, F.H. 2006. Thioautotrophic symbiosis: towards a new step in eukaryote evolution?Les Cahiers de Biologie Marine 47: 391–396.

    Google Scholar 

  • Lane, C.E. 2007. Bacterial endosymbionts: genome reduction in a hot spot.Current Biology 17: R508–510.

    Article  CAS  PubMed  Google Scholar 

  • Laue, B.E. and Nelson, D.C. 1994. Characterization of the gene encoding the autotrophic ATP sulfury lase from the bacterial endosymbiont of the hydrothermal vent tubewormRiftia pachyptila.Journal of Bacteriology 176: 3723–3729.

    CAS  PubMed  Google Scholar 

  • Lee, R.W. and Childress, J.J. 1994. Assimilation of inorganic nitrogen by chemoautotrophic and methanotrophic symbioses.Applied and Environmental Microbiology 60: 1852–1858.

    CAS  PubMed  Google Scholar 

  • Lee, R.W., Robinson, J.J., and Cavanaugh, C.M. 1999. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase.Journal of Experimental Biology 202: 289–300.

    CAS  PubMed  Google Scholar 

  • Li, J. and Kusky, T.M. 2007. World’s largest known Precambrian fossil black smoker chimneys and associated microbial vent communities, North China: Implications for early life.Gondwana Research 12: 84–100.

    Article  CAS  Google Scholar 

  • Lilley, M.D., Butterfield, D.A., Olson. E.J., Lupton, J.E., Macko, S.A., and McDuff, R.E. 1993. Anomalous CH4 and NH4 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system.Nature 364: 45–47.

    Article  CAS  Google Scholar 

  • Liu, B., Wu, S., Song, Q., Zhang, X., and Xie, L. 2006. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields.Current Microbiology 53: 163–166.

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers.Deep-Sea Research 24: 857–863.

    Article  Google Scholar 

  • MacDonald, I.R., Boland, G.S., Baker, J.S., Brooks, J.M., Kennicutt, M.C.I.I., and Bidigare, R.R. 1989. Gulf of Mexico hydrocarbon seep communities. II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill.Marine Biology 101: 235–247.

    Article  CAS  Google Scholar 

  • MacDonald, I.R., Guinasso, N.L., Reilly, J.F., Brooks, J.M., Callender, W.R., and Gabrielle, S.G. 1990. Gulf of Mexico hydrocarbon seep communities. IV. Patterns in community structure and habitat.Geo-Marine Letters 10: 244–252.

    Article  Google Scholar 

  • Margulis, L. 1981.Symbiosis in Cell Evolution, 1st Edition. W.H. Freeman, New York, 452 pp.

    Google Scholar 

  • Markert, S., Arndt, C., Felbeck, H., Becher, D., Sievert, S.M., Hugler, M., Albrecht, D., Robidart, J., Bench, S., Feldman, R.A., Hecker, M., and Schweder, T. 2007. Physiological proteomics of the uncultured endosymbiont ofRiftia pachyptila.Science 315: 247–250.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, A.G., Mullineaux, L.S., Young, C.M., and Manahan, D.T. 2001. Larval dispersal potential of the tubewormRiftia pachyptila at deep-sea hydrothermal vents.Nature 411: 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Martin, W. and Müller, M. 1998. The hydrogen hypothesis for the first eukaryote.Nature 392: 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Miller, S.L. and Bada, J.L. 1988. Submarine hot springs and the origin of life.Nature 334: 609–611.

    Article  CAS  PubMed  Google Scholar 

  • Millikan, D.S., Felbeck, H., and Stein, J.L. 1999. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubewormRiftia pachyptila.Applied and Environmental Microbiology 65: 3129–3133.

    CAS  PubMed  Google Scholar 

  • Minic, Z. and Hervé, G. 2003. Arginine metabolism in the deep sea tube wormRiftia pachyptila and its bacterial endosymbiont.Journal of Biological Chemistry 278: 40527–40533.

    Article  CAS  PubMed  Google Scholar 

  • Minic, Z. and Hervé, G. 2004. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubewormRiftia pachyptila and its bacterial endosymbiont.European Journal of Biochemistry 271: 3093–3102.

    Article  CAS  PubMed  Google Scholar 

  • Minic, Z., Pastra-Landis, S., Gaill, F., and Hervé, G. 2002. Catabolism of pyrimidine nucleotides in the deep-sea tube wormRiftia pachyptila.Journal of Biological Chemistry 277: 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Minic, Z., Serre, V., and Hervé, G. 2006. Adaptation des organismes aux conditions extremes des sources hydrothermales marines profondes.Comptes Rendus Biologies 329: 527–540.

    Article  PubMed  Google Scholar 

  • Minic, Z., Simon, V., Penverne, B., Gaill, F., and Hervé, G. 2001. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube wormRiftia pachyptila.Journal of Biological Chemistry 276: 23777–23784.

    Article  CAS  PubMed  Google Scholar 

  • Monack, D.M., Mueller, A., and Falkow, S. 2004. Persistent bacterial infections: the interface of the. pathogen and the host immune system.Nature Reviews Microbiology 2: 747–765.

    Article  CAS  PubMed  Google Scholar 

  • Moran, N.A. 1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria.Proceedings of the National Academy of Sciences, USA 93: 2873–2878.

    Article  CAS  Google Scholar 

  • Moran, N.A. 2002. Microbial minimalism: genome reduction in bacterial pathogens.Cell 108: 583–586.

    Article  CAS  PubMed  Google Scholar 

  • Moran, N.A. 2006. Symbiosis.Current Biology 16: R866–871.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, S., Takaki, Y., Shimamura, S., Reysenbach, A.L., Takai, K., and Horikoshi, K. 2007. Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens.Proceedings of the National Academy of Sciences, USA 104: 12146–12150.

    Article  CAS  Google Scholar 

  • Nelson, D.C. and Fisher, C.R. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In:Microbiology of Deep Sea Hydrothermal Vents. Karl, D.M, ed. CRC Press Inc., Boca Raton, FL, pp. 125–167.

    Google Scholar 

  • Newton, I.L., Woyke, T., Auchtung, T.A., Dilly, G.F., Dutton, R.J., Fisher, M.C., Fontanez, K.M., Lau, E., Stewart, F.J., Richardson, P.M., Barry, K.W., Saunders, E., Detter, J.C., Wu, D., Eisen, J.A., and Cavanaugh, C.M. 2007. TheCalyptogena Magnifica chemoautotrophic symbiont genome.Science 315: 998–1000.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer, A.D., Fisher C.R., and Bright, M. 2006. Horizontal endosymbiont transmission in hydrothermal vent tubeworms.Nature 441: 345–348.

    Article  CAS  PubMed  Google Scholar 

  • Ochman, H. and Moran, N.A., 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis.Science 292: 1096–1099.

    Article  CAS  PubMed  Google Scholar 

  • Odintsova, M.S. and Yurina, N.P. 2003. Plastid genomes of higher plants and algae: structure and functions.Molecular Biology 37: 649–662.

    Article  CAS  Google Scholar 

  • Oparin, A.I. 1938.The Origin of Life. Macmillan Co., New York, 252 pp.

    Google Scholar 

  • Pace, N.R. 1991. Origin of life-facing up to the physical setting.Cell 65: 531–533.

    Article  CAS  PubMed  Google Scholar 

  • Peek, A., Gustafson, R. Lutz, R., and Vrijenhoek, R. 1997. Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia:Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I.Marine Biology 130: 151–161.

    Article  CAS  Google Scholar 

  • Pereto, J. 2005. Controversies on the origin of life.International Microbiology 8: 23–31.

    CAS  PubMed  Google Scholar 

  • Pflugfelder, B., Fisher, C.R., and Bright, M. 2005. The color of the trophosome: elemental sulfur distribution in the endosymbionts ofRiftia pachyptila (Vestimentifera; Siboglinidae).Marine Biology 146: 895–901.

    Article  CAS  Google Scholar 

  • Pradillon, F., Schmidt, A., Peplies, J., and Dubilier, N. 2007. Species identification of marine invertebrate early stages by whole-larvae in situ hybridisation of 18S ribosomal RNA.Marine Ecology: Progress Series 333: 103–116.

    Article  CAS  Google Scholar 

  • Pugsley, A.P. Francetic, O. Driessen A.J., and de Lorenzo, V. 2004. Getting out: Protein traffic in prokaryotes.Molecular Microbiology 52: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, B. 2000. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit.Nature 405: 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Renosto, F., Martin, R.L., Borrell, J.L., Nelson, D.C., and Segel, I.H. 1991. ATP sulfurylase from trophosome tissue ofRiftia pachyptila (hydrothermal vent tube worm).Archives of Biochemistry and Biophysics 290: 66–78.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A.O. and Palmer J.D. Horizontal gene transfer in plants.Journal of Experimental Biology 58: 1–9.

  • Robinson, J.J., Stein, J.L., and Cavanaugh, C.M. 1998. Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubewormRiftia pachyptila.The Journal of Bacteriology 180: 1596–1599.

    CAS  Google Scholar 

  • Shank, T.M. and Halanych, K.M. 2007. Toward a mechanistic understanding of larval dispersal: insights from genomic fingerprinting of the deep-sea hydrothermal vent tubewormRiftia pachyptila.Marine Ecology 28: 25–35.

    Article  CAS  Google Scholar 

  • Shertzer, K.W. and Ellner, S.P. 2002. Energy storage and the evolution of population dynamics.Journal of Theoretical Biology 215: 183–200.

    Article  PubMed  Google Scholar 

  • Smith, D.W. and Strohl, W.R. 1991. Sulfur-oxidizing bacteria. In:Variations in Autotrophic Life. Shively, J.M. and Barton, L.L., eds. Academic Press, San Diego, CA, pp. 121–146.

    Google Scholar 

  • Sorgo, A., Gaill, F., Lechaire, J.P., Arndt, C. and Bright, M. Glycogen storage in theRiftia pachyptila trophosome: contribution of host and symbionts.Marine Ecology Progress Series 231: 115–120.

  • Stewart, F.J. and Cavanaugh, C.M. 2006. Symbiosis of thioautotrophic bacteria withRiftia pachyptila.Progress in Molecular and Subcellular Biology 41: 197–225.

    Article  CAS  PubMed  Google Scholar 

  • Syvanen, M. 1985. Cross-species gene transfer; implications for a new theory of evolution.Journal of Theoretical Biology 112: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Tamas, I., Klasson, L., Canback, B., Naslund, A.K., Eriksson, A.S., Wernegreen, J.J., Sandstrom, J.P., Moran, N.A., and Andersson, S.G. 2002. 50 million years of genomic stasis in endosymbiotic bacteria.Science 296: 2376–2379.

    Article  CAS  PubMed  Google Scholar 

  • Tunnicliffe, V., McArthur, A.. and McHugh, D. 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna.Advances in Marine Biology 34: 353–442.

    Article  Google Scholar 

  • Van Ham, R.C., Gonzalez-Candelas, F., Silva, F.J., Sabater, B., Moya, A., and Latorre, A. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon inBuchnera aphidicola.Proceedings of the National Academy of Sciences, USA 97: 10855–10860.

  • Wächtershäuser, G. 1988. Pyrite formation, the first energy source for life: a hypothesis.Systematic and Applied Microbiology 10: 207–210.

    Google Scholar 

  • Wächtershäuser, G. 1990. Evolution of first metabolic cycles.Proceedings of the National Academy of Sciences, USA 87: 200–204.

    Article  Google Scholar 

  • Wächtershäuser, G. 2000. Origin of life: Life as we don’t know it.Science 289: 1307–1308.

    Article  PubMed  Google Scholar 

  • Wächtershäuser, G. 2006. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya.Philosophical Transactions of the Royal Society London B Biological Sciences 361: 1787–1806.

    Article  CAS  Google Scholar 

  • Wächtershäuser, G. 2007. On the chemistry and evolution of the pioneer organism.Chemistry and Biodiversity 4: 584–602.

    Article  PubMed  Google Scholar 

  • Weinbauer, M.G. and Rassoulzadegan, F. 2004. Are viruses driving microbial diversification and diversity?Environmental Microbiology 6: 1–11.

    Article  PubMed  Google Scholar 

  • Wernegreen, J.J. 2002. Genome evolution in bacterial endosymbionts of insects.Nature Reviews Genetics 3: 850–861.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, S.W. and Suttle, C.A. 1999. Viruses and nutrient. cycles in the sea.BioScience 49: 781–788.

    Article  Google Scholar 

  • Williams, C.A., Nelson, D.C., Farah, B.A., Jannasch, H.W., and Shively, J.M. 1988. Ribulose bisphosphate carboxylase of the prokaryotic symbiont of a hydrothermal vent tube worm: kinetics, activity and gene hybridization.FEMS Microbiology Letters 50: 107–112.

    Article  CAS  Google Scholar 

  • Wood, A.P., Aurikko, J.P., and Kelly, D.P. 2004. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy?FEMS Microbiology Reviews 28: 335–352.

    Article  CAS  PubMed  Google Scholar 

  • Young, G.M., Smith, M.J., Minnich, S.A., and Miller, V.L. 1999. TheYersinia enterocolitica motility master regulatory operon,flhDC, is required for flagellin production, swimming motility, and swarming motility.Journal of Bacteriology 181: 2823–2833.

    CAS  PubMed  Google Scholar 

  • Zientz, E., Dandekar, T., and Gross, R. 2004. Metabolic interdependence of obligate intracellular bacteria and their insect hosts.Microbiology and Molecular Biology Reviews 68: 745–770.

    Article  CAS  PubMed  Google Scholar 

  • Zierenberg, R.A., Adams, M.W., and Arp, A.J. 2000. Life in extreme environments: hydrothermal vents.Proceedings of the National Academy of Sciences, USA 97: 12961–12962.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Minic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minic, Z. Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution. Symbiosis 47, 121–132 (2009). https://doi.org/10.1007/BF03179972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179972

Keywords

Navigation