Skip to main content
Log in

Characterisation of a psychrotolerant plant growth promotingPseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A psychrotolerant, Gram negative, rod shaped, plant growth promoting bacterium (PGPB) was isolated from high altitude of North Western Indian Himalayas. The identity of the bacterium was confirmed by morphological, biochemical and sequencing of the 16S rRNA gene. The sequence analysis revealed maximum similarity withPseudomonas vancouverensis. It exhibited tolerance to a wide pH range (5–12; optimum 7.0) and salt concentrations up to 5% (w/v). The isolate produced 8.33 and 1.38 μg/ml of IAA at 15°C and 4°C respectively, on the third day after incubation. It solubilised 42.3, 66.3 and 74.1 μg/ml of tricalcium phosphate at 4, 15 and 28°C respectively after seven days of incubation. The strain also possessed HCN and siderophore production abilities at 4°C. It exhibited inhibitory activity against several phytopathogenic fungi in three different bioassays. The maximum relative growth inhibition was recorded againstSclerotium rolfsii andRhizoctonia solani (100%), followed byPythium sp. (73.1%) andFusarium oxysporum (19.7%), in volatile compound assays. Seed bacterization with the isolate enhanced the germination of wheat seedlings grown at 18±1°C by 20.3%. Bacterized seeds also recorded 30.2 and 27.5% higher root and shoot length respectively, compared to uninoculated controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alstrom S., Burns R.G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fert. Soils, 7: 232–238.

    Article  Google Scholar 

  • Bakker A.W., Schippers B. (1987). Microbial cyanide production in the Rhizosphere in relation to potato yield reduction andPseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem., 19: 451–457.

    Article  CAS  Google Scholar 

  • Basu P.S., Ghosh A.C. (1998). Indole acetic acid and its metabolism in root nodules of a monocotyledonous treeRoystonea regia. Curr. Microbiol., 37: 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Behrendt U., Ulrich A., Schumann P., Meyer J. M., Sproer C. (2007).Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol., 57: 979–985.

    Article  CAS  PubMed  Google Scholar 

  • Bric J.M., Bostock R.M., Silverstone S.R. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Microbiol., 57: 535–538.

    CAS  Google Scholar 

  • Collins C.H., Lyne P.M. (1980). Microbiological Methods. Butterworth and Co. (Publishers) Ltd, London.

    Google Scholar 

  • Elliot L.F., Lynch J.M. (1984).Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem., 16: 69–71.

    Article  Google Scholar 

  • Glick B.R., Penrose D.M., Jiping L. (1998). A model for the lowering plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S.A., Weber R.P. (1951). Colometric estimation of Indole Acetic Acid. Plant Physiol., 26: 192–195.

    Article  CAS  PubMed  Google Scholar 

  • Greenland D., Losleben M. (2001). Climate. In: Bowman W.D., Seastedt T.R., Eds., Structure and Function of an Alpine Ecosystem Niwot Ridge, Colorado, Oxford University Press, New York, N.Y., pp. 15–31.

    Google Scholar 

  • Gull F.Y., Hafeez I., Saleem M., Malik K.A. (2004). Phosphorus uptake and growth promotion of chickpea by co-inoculation o fmineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust. J. Exp. Agric., 44: 623–628.

    Article  CAS  Google Scholar 

  • Hoagland D.R., Arnon D.I. (1938). The water culture method for growing plants without soil; Circ. Calif. Agric. Exp. Stn. 347 32.

    Google Scholar 

  • Holt J.G., Kreig N.R., Sneath P.H.A., Stanley J.T., Williams S.T. (1994). Bergey’s Manual of Determinative Bacteriology, 9th edn., The Williams & Wilkins Co, Baltimore, MD.

    Google Scholar 

  • Huang H.C., Hoes J.A. (1976). Penetration and infection inSclerotium byC. minitans. Can. J. Botany, 54: 406–410.

    Google Scholar 

  • Katiyar V., Goel R. (2004). Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul., 42: 239–244.

    Article  CAS  Google Scholar 

  • Kloepper J.W., Schroth M.N. (1978). Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Gilbert-Clarey, Tours, France, pp. 879–882.

    Google Scholar 

  • Kluepfel D.A. (1993). The behaviour and tracking of bacteria in the rhizosphere. Annu. Rev. Phytopathol., 31: 441–472.

    Article  Google Scholar 

  • Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carison J., Tipping E.N., Zaleska I. (1987). Growth promotion of canola (rape-seed) seedlings by a strain ofPeudomonas putida under gnotobiotic conditions. Can. J. Microbiol., 8: 102–106.

    Google Scholar 

  • Misaghi I.J., Stowell L.J., Grogan R.G., Spearman L.C. (1982). Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology, 72: 33–36.

    Article  CAS  Google Scholar 

  • Mohn W.W., Wilson A.E., Bicho P., Moore E.R.B. (1999). Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst. Appl. Microbiol., 22: 68–78.

    CAS  PubMed  Google Scholar 

  • Morita R.Y. (1975). Psychrophilic bacteria. Bact. Rev., 39: 144–167.

    CAS  PubMed  Google Scholar 

  • Murphy J.P., Riley J.P. (1962). A modified single solution method for the determination of the phosphate in natural waters. Anal. Chem. Acta, 27: 31–36.

    Article  CAS  Google Scholar 

  • Neilands J.B. (1986). Microbial iron compounds. Annu. Rev. Biochem., 50: 715–731.

    Article  Google Scholar 

  • Neilands J.B., Konopka K., Schwyn B., Coy M., Francis R.T., Paw B.H., Bagg A. (1987). Comparative biochemistry of microbial iron assimilation, In: Winkelmann G., Van der Helm D., Neilands J.B., Eds, Iron Transport in Microbes, Plants and Animals, Verlagsgescellschaft mbh. Weinheim, pp. 3–33.

    Google Scholar 

  • Palleroni N.J., Doudoroff M. (1972). Some properties and taxonomic subdivisions of genusPseudomonas. Annu. Rev. Phytopathol., 10: 73–100.

    Article  Google Scholar 

  • Palleroni N.J. (1992). Introduction to the family Pseudomonadaceae. In: Balows A., Truper H., Dworkin M., Harder W., Schleifer K.H., Eds, The Prokaryotes, 2nd edn., vol. 1, Springer-Verlag, New York, N.Y., pp. 3071–3079.

    Google Scholar 

  • Pandey A., Palni L.M.S. (1998). Isolation ofPseudomonas corrugata from Sikkim Himalaya. World J. Microbiol. Biotechnol., 14: 411–413.

    Article  Google Scholar 

  • Pandey A., Durgapal A., Joshi M., Palni L.M.S. (1999). Influence ofPseudomonas corrugata inoculation on root colonization and growth promotion of two important hill crops. Microbiol. Res., 154: 259–266.

    Google Scholar 

  • Pandey A., Trivedi P., Kumar B., Palni L.M.S. (2006). Characterization of a phosphate solubilizing and antagonistic strain ofPseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol., 53: 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Patten C.L., Glick B.R. (2002). Role ofPseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795–3801.

    Article  CAS  PubMed  Google Scholar 

  • Perrire G., Gouy M. (1996). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie, 78: 364–369.

    Article  Google Scholar 

  • Pikovskaya R.I. (1948). Mobilization of the phosphorous in soil in connection with the vital activity of some microbial sp. Mikrobiologiya, 17: 362–370.

    CAS  Google Scholar 

  • Podile A.P., Kishore K.G. (2006). Plant growth promoting Rhizobacteria. In: Gnanamanickam S.S., Ed., Plant Associated Bacteria, Springer, Netherlands, pp. 195–230.

    Chapter  Google Scholar 

  • Premono M.E., Moawad A.M., Vlek P.L.G. (1996). Effect of phosphate-solubilizingPseudomonas Psychrophilic bacteria. Bact. Rev., 39: 144–167.

    Google Scholar 

  • Saitou N., Nei M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sangeeta M., Shekhar N.C. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol., 43: 51–56.

    Article  Google Scholar 

  • Schillinger U., Lucke F.K. (1989). Antibacterial activity ofLactobacillus stain isolated from meat. Appl. Environ. Microbiol., 55: 1901–1906.

    CAS  PubMed  Google Scholar 

  • Schwyn B., Neilands J. (1987). Universal assay for detection and determination of siderophores. Anal. Biochem., 160: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G., Kundu S., Joshi P., Nazim S., Gupta A.D., Mishra P.K., Gupta H.S. (2008a). Characterization of a cold-tolerant plant growth-promoting bacteriumPantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol., 24: 955–960.

    Article  CAS  Google Scholar 

  • Selvakumar G., Mohan M., Kundu S., Gupta A.D., Joshi P., Nazim S., Gupta H.S. (2008b). Cold tolerance and plant growth promotion potential ofSerratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol., 46: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S., Chaturvedi P., Reddy G.S.N., Suresh K. (2005).Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int. J. Syst. Evol. Microbiol., 55: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools; Nucleic Acids Res., 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  • Tilak K.V.B.R., Ranganayaki N., Pal K.K., De R., Saxena A.K., Nautiyal C., Shekhar M.S., Tripathi A.K., Johri B.N. (2005). Diversity of plant growth and soil supporting bacteria. Curr. Sci., 89: 136–150.

    CAS  Google Scholar 

  • Trivedi P., Pandey A., Palni L.M.S., Bag N., Tamang M.B. (2005). Colonization of rhizosphere of tea by growth promoting bacteria. Int. J. Tea Sci., 4: 19–25.

    Google Scholar 

  • Valverde A., Burgos A., Fiscella T., Rivas R., Velazquez E., Rodriguez-Barrueco C., Cervantes E., Chamber M., Igual J.M. (2006). Differential effects of coinoculations withPseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) andMesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil, 287: 43–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P.K., Mishra, S., Selvakumar, G. et al. Characterisation of a psychrotolerant plant growth promotingPseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann. Microbiol. 58, 561–568 (2008). https://doi.org/10.1007/BF03175558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175558

Key words

Navigation