Skip to main content
Log in

Homoclinic and heteroclinic bifurcations of Vector fields

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

We study a bifurcation of homoclinic and heteroclinic orbits in a two or more parameter family of autonomous ODEs, where the unperturbed system has two heteroclinic orbits joined at a common saddle point. Under some assumptions on eigenvalues of the linearized equation at equilibrium points and on a non-degeneracy condition for the system, we can show that heteroclinic orbits of new type appear besides the persistent ones of the unperturbed system. A bifurcation diagram is given for such families. Some homoclinic bifurcations are also treated including the one producing a twice-rounding homoclinic orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. R. Belitskii, Functional equations and conjugacy of local diffeomorphism of a finite smoothness class. Functional Anal. Appl.7 (1973), 268–277.

    Article  Google Scholar 

  2. H. Berestycki, B. Nicolaenko and B. Scheurer, Travelling wave solutions to reaction-diffusion systems modeling combustion. Nonlinear Partial Differential Equations, Contemporary Mathematics Vol. 17, AMS, Providence, 1983, 189–208.

    Google Scholar 

  3. J. Carr. Applications of Centre Manifold Theory. Appl. Math. Sci., Vol. 35, Springer, 1981.

  4. J. Carr, S.-N. Chow and J. K. Hale, Abelian integrals and bifurcation theory. J. Differential Equations,59 (19850, 413–436.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.-N. Chow, B. Deng and D. Terman, The bifurcation of a homoclinic orbit from two heteroclinic orbits—a topological approach—. Preprint.

  6. S.-N. Chow, B. Deng and D. Terman, The bifurcation of a homoclinic and periodic orbit from two heteroclinic orbits— an analytical approach—. Preprint.

  7. S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory. Springer, 1982.

  8. E. A. Coddington and L. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  9. W. A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Math.,629, Springer, 1978.

  10. P. Coullet, J.-M. Gambaudo et C. Tresser, Une bifurcation de codimension 2: le collages de cycles. C. R. Acad. Sci. Paris,299 (1984), 253–256.

    MATH  MathSciNet  Google Scholar 

  11. J.-M. Gambaudo, P. Glendinning et C. Tresser, Collages de cycles et suites de Farey. C. R. Acad. Sci. Paris,299 (1984), 711–714.

    MATH  MathSciNet  Google Scholar 

  12. P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation. Phys. Lett.,97A (1983), 1–4.

    MathSciNet  Google Scholar 

  13. S. A. van Gils, A note on “Abelian integrals and bifurcation theory.” J. Differential Equations,59 (1985), 437–441

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Glendinning, Bifurcations near homoclinic orbits with symmetry. Phys. Lett.,103A (1984), 163–166.

    MathSciNet  Google Scholar 

  15. P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits. J. Statist. Phys.,35 (1984), 645–696.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Glendinning and C. Sparrow, T-points: A codimension two heteroclinic bifurcation. J. Statist. Phys.,43 (1986), 479–488.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Gruendler, The existence of homoclinic orbits and the method of Melnikov for systems inR n. SIAM J. Math. Anal.,16 (1985), 907–931.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Appl. Math. Sci. Vol. 42, Springer, 1983, 2nd printing, 1986.

  19. H. Ikeda, M. Mimura and T. Tsujikawa, Singular perturbation approach to traveling wave solutions of the Hodgkin-Huxley equations and its application to stability problems. To appear in Japan J. Appl. Math.

  20. H. Kokubu, On a codimension 2 bifurcation of heteroclinic orbits. Proc. Japan Acad.,63, Ser. A (1987), 298–301.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. N. Lorenz, Deterministic nonperiodic flow. J. Atom. Sci.20 (1963), 130–141.

    Article  Google Scholar 

  22. V. K. Melnikov, On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc.,12 (1963), 1–57.

    Google Scholar 

  23. K. J. Palmer, Exponential dichotomies and transversal homoclinic points. J. Differential Equations,55 (1984), 225–256.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion system. SIAM J. Appl. Math.,42 (1982), 1111–1137.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. A. Rodriguez, Bifurcations to homoclinic connections of the focus-saddle type. Arch. Rational Anal. Mech.,93 (1985), 81–90.

    Article  Google Scholar 

  26. S. Schecter, The saddle-node separatrix-loop bifurcation. SIAM J. Math. Anal.,18 (1987), 1142–1156.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. P. Shil’nikov, On a Poincaré-Birkhoff problem. Math. USSR-Sb.,3 (1967), 353–371.

    Article  Google Scholar 

  28. L. P. Shil’nikov, On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type. Math. USSR-Sb.,6 (1968), 427–438.

    Article  Google Scholar 

  29. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Atrractors. Appl. Math. Sci. Vol. 41, Springer, 1982.

  30. C. Tresser, About some theorems by L. P. Shil’nikov. Ann. Inst. H. Poincaré,40 (1984), 441–461.

    MATH  MathSciNet  Google Scholar 

  31. E. Yanagida, Branching of double pulse solutions from single pulse solutions in nerve axon equations. J. Differential Equations,66 (1987), 243–262.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Żolądek, Bifurcations of certain family of planar vector fields tangent to axes. J. Differential Equations,67 (1987), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Deng, Shil’nikov problem, exponential expansion, strong λ-lemma,C 1-linearization and homoclinic bifurcation. To appear in J. Differential Equations.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kokubu, H. Homoclinic and heteroclinic bifurcations of Vector fields. Japan J. Appl. Math. 5, 455–501 (1988). https://doi.org/10.1007/BF03167912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167912

key words

Navigation