Skip to main content
Log in

Physical mapping by FISH and GISH of rDNA loci and discrimination of genomes A and B inScilla scilloides complex distributed in Korea

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The chromosomal locations of the 18S-26S (45S) and 5S rDNA loci in cytotypes AA, BB, and AABB ofScilla scilloides Complex from Korea were physically mapped using multicolor fluorescencein situ hybridization (McFISH). Genomicin situ hybridization (GISH) was also performed to distinguish between the AA and BB genomes in allotetraploid AABB plants. One 18S-26S rDNA locus was detected in both AA (a2) and BB (b1 ); one locus also was found in the allopolyploid AABB (b1 ). This demon-strated the loss of that locus in genome A. GISH with biotin-labeled DNA from the BB genome and digoxigenin-labeled 18S-26S rDNA probes revealed that the 18S-26S rDNA in AABB plants was localized in the nucleolus organizer region (NOR) of genome B. One and two 5S rDNA loci were found in diploids AA and BB, respectively. As expected, all three 5S rDNA loci were detected in the AABB plants. The sequence identities of the 5S rDNA genes among cytotypes AA and BB, AA and AABB, and BB and AABB were 99%, 95%, and 95%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anamthawat-Jonsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely relatedTriticeae species using genomic DNA as a probe. Theor Appl Genet 79: 721–728

    Article  CAS  Google Scholar 

  • Araki H (1971) Cytogenetics ofScilla scilloides Complex. Homoeology between genomes A (x=8) and B (x=9). Jpn J Genet 46: 265–275

    Article  Google Scholar 

  • Araki H (1972) Cytogenetics ofScilla scilloides Complex. Euploid and aneuploid offspring from allo-triploids in a natural population. Jpn J Genet 47: 73–83

    Article  Google Scholar 

  • Araki H (1985) The distribution of diploids and polyploids ofScilla scilloides complex in Korea. Genetica 66: 3–10

    Article  Google Scholar 

  • Araki H, Hidaka S, Takahashi S (1976) Cytogenetics ofScilla scilloides Complex. VI. The structures of natural populations. Bot Mag Tokyo 89: 83–91

    Article  Google Scholar 

  • Bennett ST, Kenton AY, Bennett MD (1992) Genomicin situ hybridization reveals the allopolyploid nature ofMilium montanum (Gramineae). Chromosoma 101: 420–424

    Article  Google Scholar 

  • Bennett ST, Thomas SM (1991) Karyological analysis and genome size inMilium (Gramineae) with special reference to polyploidy and chromosomal evolution. Genome 34: 868–878

    Google Scholar 

  • Choi HW (1996) Cytogenetic Diversity inScilla scilloides Complex from Korean Natural Populations and Chromosome Stability in Somaclones. Ph D. Thesis, Chungnam National University, Daejeon, Korea

  • Choi HW, Bang JW, Kim YJ (1997) Giemsa C-banded karyotype ofScilla scilloides Complex. Kor J Genet 19: 251 -256

    CAS  Google Scholar 

  • Choi HW, Lee WK, Choi EY, Park JH, Bang JW (2004) Geographical distribution of cytotypes and genomic structures in natural populations of theScilla scilloides Complex in Korea. J Plant Biol 47: 322–329

    Article  Google Scholar 

  • Choi HW, Song H, Koo DH, Bang JW, Hur Y (2007) Molecular and cytological characterization of species-specific repetitive sequences forAngelica acutiloba. Kor J Genet 29: 503–511

    CAS  Google Scholar 

  • Ding K, Ge S, Hong D, Yu Z (1998) Cytotype variation and cytogeography ofScilla sinensis (LOURIRO) MERRILL (Hyacinthaceae) in China. Hereditas 129: 151–160

    Article  Google Scholar 

  • Dover G (1982) Molecular drive: Cohesive mode of species evolution. Nature 9: 111–116

    Article  Google Scholar 

  • Flavell RB (1989) Variation in structure and expression of ribosomal DNA loci in wheat. Genome 32: 925–929

    Google Scholar 

  • Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596

    Article  Google Scholar 

  • Ge XH, Li ZY (2007) Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivatedBrassica species revealed by GISH analysis. Chromosome Res 15: 849–861

    Article  PubMed  CAS  Google Scholar 

  • Graham GC, Mayers P, Henly PJ (1994) Simple and rapid method for the preparation of fungal genomic DNA for PCR and RAPD analysis. BioTechniques 16: 2–3

    Google Scholar 

  • Haga T, Noda S (1976) Cytogenetics of theScilla scilloides Complex. I. Karyotype, genome, and population. Genetica 46: 161–176

    Article  Google Scholar 

  • Hizume M, Araki H (1994) Chromosomal localization of rRNA genes in six cytotypes ofScilla scilloides Druce. Cytologia 59: 35–42

    Google Scholar 

  • Hizume M, Araki H (1996) Discrimination of chromosomes belonging to the genomes A and B in polyploids ofScilla scilloides, Liliaceae by genomicin situ hybridization. La Kromosomo II1 83-84: 2885–2892

    Google Scholar 

  • Hizume M, Araki H (1997) Chromosomal localization of 5S rDNA in the genomes A and B of theScilla scilloides Complex, Liliaceae. Chromosome Sci 1: 65–67

    Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescencein situ hybridization (FISH) in plant genome research. Genome 49: 1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Choi HW, Koo DH, Lee WK, Lee J, Bang JW (2006) Characterization of eightRumex species by FISH (fluorescencein situ hybridization) and 5S rDNA spacer sequences. Kor J Genet 28: 243–251

    CAS  Google Scholar 

  • Leitch AR, Mosgöller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomicin-situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95: 335–341

    PubMed  CAS  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Fulnecek J, Leitch AR (2005) Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploidNicotiana rustica compared with diploid progenitorsN. paniculata andN. undulata. Cytogenet Genome Res 109: 298–309

    Article  PubMed  CAS  Google Scholar 

  • Maekawa F (1944) Prehistoric-naturalized plants to Japan proper. Acta Phytotax Geobot 13: 274–279

    Google Scholar 

  • McIntyre CL, Winberg B, Houchins K, Appels R, Baum BR (1992) Relationships betweenOryza species (Poaceae) based on 5S DNA sequences. Plant Syst Evol 183: 249–264

    Article  CAS  Google Scholar 

  • Mochizuku K, Umeda M, Ohtsubo H, Ohtsubo E (1992) Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn J Genet 67: 155–166

    Article  Google Scholar 

  • Morinaga T (1932) A preliminary note on the karyological types ofScilla japonica Bak. Jpn J Genet 7: 202–205

    Article  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolorin situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Navashin MS (1928) Amphiplastie-eine neue karyologische Erscheinung. Proc Intl Conf Genet 5: 1148–1152

    Google Scholar 

  • Noda S (1974) Cytogenetics ofScilla scilloides Complex. II. Evidence for homoeologous relationship between the genomes. Cytologia 39: 777–782

    Google Scholar 

  • Okabe S (1938) Uber den karyotypus einer n = 9 chromosomigen rasse vonScilla thunbergii Miyabe et Kudo. Bot Zool 6: 481–483

    Google Scholar 

  • Ritossa F (1973) Crossing-over between X and Y chromosomes during rDNA magnification inDrosophila melanogaster. Proc Natl Acad Sci 70: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989)In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324

    Google Scholar 

  • Seo JH, Lee BH, Seo BB, Yoon HS (2007a) Identification of a molecular marker and chromosome mapping of the 5S rRNA gene inAllium sacculiferum. J Plant Biol 50: 687–691

    Article  CAS  Google Scholar 

  • Seo JH, Pak JH, Seo BB (2007b) Sequence variation among tandem repeat unit of 5S rDNA gene and phylogenetic relationship in four taxa ofDendranthema. Kor J Genet 29:211–218

    CAS  Google Scholar 

  • Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wildHordeum species and cytotypes. Theor Appl Genet 98: 1–9

    Article  CAS  Google Scholar 

  • Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garridoramos MA (1993) Loss of nucleolar-organizer regions during polyploid evolution inScilla autumnalis. Heredity 71: 574–580

    Article  Google Scholar 

  • Volkov RA, Zanke C, Panchuk II, Hemleben V (2001) Molecular evolution of 5S rDNA ofSolanum species (sect. Petota): Application for molecular phylogeny and breeding. Theor Appl Genet 103: 1273–1282

    Article  CAS  Google Scholar 

  • Yu Z, Araki H (1991) The distribution of diploids and polyploids of theScilla scilloides Complex in the northeastern district of China. Bot Mag Tokyo 104: 183–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Wook Bang.

Additional information

These authors contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HW., Kim, JS., Lee, SH. et al. Physical mapping by FISH and GISH of rDNA loci and discrimination of genomes A and B inScilla scilloides complex distributed in Korea. J. Plant Biol. 51, 408–412 (2008). https://doi.org/10.1007/BF03036061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036061

Keywords

Navigation