Skip to main content
Log in

Selective neurotoxins, chemical tools to probe the mind: The first Thirty years and beyond

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

For centuries, starting with the advent of the microscope, cytotoxins have been known to non-selectively destroy nerves and other tissue cells. However, neurotoxins restricted in effect to one kind of neuron are an invention of the 20th century. One might reasonably trace the origins of this field to 1960 when the Nobel Laureates, R. Levi-Montalcini and S. Cohen, showed that an antibody to nerve growth factor effectively prevented development of sympathetic nerves in the absence of overt changes in dorsal root ganglia and other neural and non-neural tissues. The year 1967 marks discovery of 6-hydroxydopamine, the first of dozens of chemically-selective neurotoxins. As stated by the physiologist W.B. Cannon, neural function can be deduced by denoting absence-deficits. A wealth of knowledge in neuroscience has been realized through the use of neurotoxins. In the 21st century we foresee neurotoxins for virtually all neurochemically-identifiable or receptor-specific neurons, acting at/via functional proteins or characteristic DNA sites. These tools will provide us with a better means to probe the mind and thereby lead to a fuller understanding of the intricate roles of identifiable neuronal systems in integrative neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman, E., White, W.R, Loring, R.H. and Rosenberg, P.A. (1990) A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons.Neurosci. Lett. 116, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Appel, N.M., Contrera, J.R and DeSouza, E.B. (1989) Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: Evidence from immunocytochemical studies.J. Pharmacol. Exp. Ther. 249, 928–943.

    PubMed  CAS  Google Scholar 

  • Azevedo, I. and Osswald, W. (1977) Adrenergic nerve degeneration induced by condensation products of adrenaline and acetaldehyde.Naunyn-Schmiedeberg’s Arch. Pharmacol. Exp. Pathol. 300, 139–144.

    Article  CAS  Google Scholar 

  • Ballard, P. A., Tetrud, J. W. and Langston, J.W. (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP): Seven cases.Neurology 35, 949–956.

    PubMed  CAS  Google Scholar 

  • Barlow, P. and Marchbanks, R.M. (1984) Effect of ethylcholine mustard on choline dehydrogenase and other enzymes of choline metabolism.J. Neurochem. 43, 1568–1573.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G., Bjorklund, A., Lachenmayer, L., Nobin, A. and Stenevi, U. (1971) Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine.Acta Physiol. Scand. Suppl. 373, 1–116.

    PubMed  CAS  Google Scholar 

  • Baumgarten, H.G., Bjorklund, A., Holstein, A.F. and Nobin, A. (1972a) Chemical degeneration of indoleamine axons in rat brain by 5,6-dihydroxytryptamine. Ultrastructural study.Z. Zellforsch. 129, 259–271.

    Article  CAS  Google Scholar 

  • Baumgarten, H.G., Evetts, K.D., Holman, R.B., Iversen, L.L., Vogt, M. and Wilson, G. (1972b) Effects of 5,6-dihydroxytryptamine on monoaminergic neurons in the central nervous system of the rat.J. Neurochem. 19, 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G. and Schlossberger, H.G. (1973) Effects of 5,6-dihydroxytryptamine on brain monoamine neurons in the rat. In Barchas, J. and Usdin, E. (Eds.),Serotonin and Behavior (New York: Academic Press), pp. 209–224.

    Google Scholar 

  • Baumgarten, H.G., Klemm, H.P., Lachenmayer, L., Bjorklund, A., Lovenberg, W. and Schlossberger, H.G. (1978a) Mode and mechanism of action of neurotoxic indoleamines: A review and progress report.Ann. NY Acad. Sci. 305, 3–24.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G., Klemm, H.P., Lachenmayer, L. and Schlossberger, H.G. (1978b) Effect of drugs on the distribution of [14C]-5,6-dihydroxytryptamine and [14C]-5,7-dihydroxytryptamine in rat brain.Ann. NY Acad. Sci. 305, 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G. and Lachenmayer, L. (1972) 5,7-dihydroxy-tryptamine. Improvement in chemical lesioning of indoleamine neurons in the mammalian brain.Z. Zellforsch. 135, 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Kowall, N.W, Ellison, D.W., Mazurek, M.F., Swartz, K.J. and Martin, J.B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quino-linic acid.Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Benes, EM., Paskewich, P.A., Davidson, J. and Domesick, V.B. (1985) The effects of haloperidol on synaptic patterns in the rat striatum.Brain Res. 329, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N.H. (1984) Elevation of the extracellular concentrations of glu-tamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, S. and Docherty, R.J. (1993) Cellular mechanisms of action of capsaicin. In Wood, J.N. (Ed.),Capsaicin in the Study of Pain (New York: Academic Press), pp. 27–44.

    Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidation products of catecholamines.Free Radic. Biol. Med. 13, 391–405.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Nobin, A. and Stenevi, U. (1973a) Effects of 5,6-dihydroxytryptamine on nerve terminal serotonin and serotonin uptake in the rat brain.Brain Res. 53, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Nobin, A. and Stenevi, U. (1973b) Use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons.Z. Zellforsch. 145, 479–501.

    Article  PubMed  CAS  Google Scholar 

  • Blank, C.L., Kissinger, P.T. and Adams, R.N. (1972a) 5,6-Dihydroxyindole formation from oxidized 6-hydroxydopa-mine.Eur. J. Pharmacol. 19, 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Blank, C.L., McCreery, R.L., Wightman, R.M., Chey, W., Adams, R.N., Reid, J.R. and Smissman, E.E. (1972b) Intracyclization rates of 6-hydroxydopamine and 6-amino-dopamine analogs under physiological conditions.J. Med. Chem. 19, 178–180.

    Article  Google Scholar 

  • Blank, C.L., Murrill, E. and Adams, R.N. (1972c) Central nervous system effects of 6-aminodopamine and 6-hydroxydopamine.Brain Res. 45, 635–637.

    Article  PubMed  CAS  Google Scholar 

  • Blank, C.L., McCreery, R.L., Wightman, R.M., Chey, W., Adams, R.N., Reid, J.R. and Smissman, E.E. (1976) Intracyclization rates of 6-hydroxydopamine and 6-aminodopamine analogs under physiological conditions.J. Med. Chem. 19, 178–180.

    Article  PubMed  CAS  Google Scholar 

  • Bloomquist, J., King, E., Wright, A., Mytilineou, C, Kimura, K., Castagnoli, K. and Castagnoli Jr., N.) (1994) 1-Methyl-4-phenyl-pyridinium-like neurotoxicity of a pyridinium metabolite derived fromhaloperidol: Cell culture and neurotransmitter uptakestudies.J. Pharmacol. Exp. Ther. 270, 822–830.

    PubMed  CAS  Google Scholar 

  • Borchardt, R.T., Burgess, S.K., Reid, J.R., Liang, Y.O. and Adams, R.N. (1977) Effects of 2-and/or 5-methylated analogues of 6-hydroxydopamine on norepinephrine- and dopamine-containing neurons.Mol. Pharmacol. 13, 805–818.

    CAS  Google Scholar 

  • Bredt, D.S. and Snyder, S.H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.Proc. Natl. Acad. Sci. USA 86, 9030–9033.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.E., McGuirl, M.A., Dooley, D.M., Janes, S.M., Mu, D. and Klinman, J.P. (1991) The organic functional group in copper-containing amine oxidases. Resonance Raman spectra are consistent with the presence of topa quinone (6-hydroxydopa quinone) in the active site.J. Biol. Chem. 266, 4049–4051.

    PubMed  CAS  Google Scholar 

  • Buck, S.H. and Burks, T.F. (1986) The neuropharmacology of capsaicin: A review of some recent observations.Pharmacol. Rev. 38, 179–226.

    PubMed  CAS  Google Scholar 

  • Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M. and Kopin, I.J. (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J.L., Ladenheim, B., Baum, I., Carlson, E. and Epstein, C. (1994) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxy-amphetamine (MDA) and of methylenedioxymethamphe-tamine (MDMA).Brain Res. 655, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, W.B. and Rosenblueth, A. (1937)Autonomic Neuro-effector Systems (New York, NY: Macmillan Co.).

    Google Scholar 

  • Casey, D.E., Povlsen, U.J., Meidahl, B. and Gerlach, J. (1985) Neuroleptic induced-tardive dyskinesia and parkinsonism: Changes during several years of continuing treatment.Psychopharmacol. Bull. 22, 250–253.

    Google Scholar 

  • Castagnoli Jr., N., Chiba, K. and Trevor, A.J. (1985) Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Life Sci. 36, 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH. and Fishman, R.A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling.J. Neurochem. 35, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Charriaut-Marlangue, C, Aggoun-Zouaoui, D., Represa, A. and Ben-Ari, Y. (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity.Trends Neurosci. 19, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, A.C. and Castagnoli Jr., N. (1984) Synthesis and physicochemical and neurotoxicity studies of l-(4-substi-tuted-2,5-dihydroxyphenyl)-2-aminoethane analogues of 6-hydroxydopamine.J. Med. Chem. 27, 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, K, Trevor, A. and Castagnoli Jr., N. (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes.Biochem. Biophys. Res. Commun. 128, 1229–1232.

    Article  Google Scholar 

  • Chiba, K., Trevor, A. and Castagnoli Jr., N. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase.Biochem. Biophys. Res. Commun. 120, 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Cho, A.K., Ranson, R.W., Fischer, J.B. and Kammerer, R.C. (1980) The effects of xylamine, a nitrogen mustard, on [3H]norepinephrine accumulation in rabbit aorta.J. Pharmacol. Exp. Ther. 214, 324–327.

    PubMed  CAS  Google Scholar 

  • Choi, D.W., Koh, J.Y. and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists.J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  • Clark, G.D. and Rothman, S.M. (1987) Blockade of excitatory amino acid receptors protects anoxic hippocampal slices.Neuroscience 21, 665–671.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. (1960) Purification of a nerve growth promoting protein from the mouse salivary gland and its neurocyto-toxic antiserum.Proc. Natl. Acad. Sci. USA 46, 302–311.

    Article  PubMed  CAS  Google Scholar 

  • Commins, D.L., Vosmer, G., Virus, R.M., Woolveerton, W.L., Schuster, C.R. and Seiden, L.S. (1987) Biochemical and histological evidence that methylenedioxymethamphet-amine (MDMA) is toxic to neurons in the rat brain.J. Pharmacol. Exp. Ther. 241, 338–345.

    PubMed  CAS  Google Scholar 

  • Connor, J. A., Wadman, W.J., Hockberger, P.E. and Wong, R.K. (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons.Science 240, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Curti, D. and Marchbanks, R.M. (1984) Kinetics of irreversible inhibition of choline transport in synaptosomes by ethylcho-line mustard aziridinium.J. Membrane Biol. 82, 259–268.

    Article  CAS  Google Scholar 

  • DiFiglia, M. (1990) Excitotoxic injury of the neostriatum: A model for Huntington’s disease.Trends Neurosci. 13, 286–289.

    Article  PubMed  CAS  Google Scholar 

  • DiMonte, D.A., Wu, E.Y, Irwin, I., DeLanney, L.E. and Langston, J.W (1991) Biotransformation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in primary cultures of mouse astrocytes.J. Pharmacol. Exp. Ther. 248, 594–600.

    Google Scholar 

  • Dunnett, S.B., Everitt, B.J. and Robbins, T.W. (1991) The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions.Trends Neurosci. 14, 494–501.

    Article  PubMed  CAS  Google Scholar 

  • Duval, D., Roome, N., Gauffeny, C, Nowicki, J.P. and Scatton, B. (1992) SL82.0715, an NMDA antagonist acting at the polyamine site, does not induce neurotoxic effects on rat cortical neurons.Neurosci. Lett. 137, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, G. (1992) Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus.Brain Res. 598, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, G. (1995) The NMDA antagonists phencyclidine, ketamine, and dizocilpine as both behavioral and anatomical models of the dementias.Brain Res. Rev. 20, 250–267.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, G. (1998) The neurotoxic effects of continuous cocaine and amphetamine in habenula. In Kostrzewa, R.M. (Ed.)Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 211–233.

    Google Scholar 

  • Ellison, G.D. and Eison, M.S. (1983) Continuous amphetamine intoxication: An animal model of the acute psychotic episode.Psychological Med. 13, 751–761.

    CAS  Google Scholar 

  • Ellison, G.D., Eison, M., Huberman, H. and Daniel, R (1978) Long term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration.Science 201, 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, G.D., Nielsen, E.B. and Lyon, M. (1981) Animal models of psychosis: Hallucinatory behaviors in monkeys during the late stage of continuous amphetamine intoxication.J. Psychiatry Res. 16, 13–22.

    Article  CAS  Google Scholar 

  • Ellison, G. and Switzer III, R. (1994) Dissimilar patterns of degeneration in brain following four different addictive stimulants.Neuroreport 5, 17–20.

    Article  Google Scholar 

  • Eyles, D.W., McGrath, J.J. and Pond, S.M. (1996) Formation of pyridinium species of haloperidol in human liver and brain.Psychopharmacology (Berl.)125, 214–219.

    Article  CAS  Google Scholar 

  • Eyles, D.W., McLennan, H.R., Jones, A., McGrath, J.J., Stedman, T.J. and Pond, S.M. (1994) Quantitative analysis of two pyridinium metabolites of haloperidol patients with schizophrenia.Clin. Pharmacol. Ther. 56, 512–520.

    PubMed  CAS  Google Scholar 

  • Fang, J. and Yu, P.H. (1995) Effect of haloperidol and its metabolites on dopamine and noradrenaline uptake in rat brain slices.Psychopharmacology (Berl.)121, 379–384.

    Article  CAS  Google Scholar 

  • Farkas-Szallasi, T., Lundberg, J.M., Wiesenfeld-Hallin, Z. and Szallasi, A. (1995) Increased levels of GMAP, VIP and nitric oxide synthase, and their mRNAs, in lumbar dorsal root ganglia of the rat following systemic resiniferatoxin treatment.Neuroreport 6, 2230–2234.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson Jr., E.P., Bird, E.D. and Martin, J.B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease.Science 230, 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, J.B. and Cho, A.K. (1982) Inhibition of [3norepinephrine uptake in organ cultured rat superior cervical ganglia by xylamine.J. Pharmacol. Exp. Ther. 220, 115–119.

    PubMed  CAS  Google Scholar 

  • Fisher, A. and Hanin, I. (1980) Minireview: Choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction.Life Sci. 27, 1615–1643.

    Article  PubMed  CAS  Google Scholar 

  • Fix, A.S., Ross, J.F., Statzel, S.R. and Switzer, R.C. (1996) Integrated evaluation of central nervous system lesions: Stains for neurons, astrocytes, and microglia reveal the spatial and temporal features of MK-801-induced neuronal necrosis in the rat cerebral cortex.Toxicol. Pathol. 24, 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Fix, A.S., Wozniak, D.F., Truex, L.L., McEwen, M., Miller, J.P. and Olney, J.W. (1995) Quantitative analysis of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulate/retrosplenial cortex.Brain Res. 696, 194–204.

    Article  PubMed  CAS  Google Scholar 

  • Fritschy, J.M., Geffard, M. and Grzanna, R. (1990) The response of noradrenergic axons to systemically administered DSP-4 in the rat: An immunohistochemical study using antibodies to noradrenaline and dopamine-ß-hydroxylase.J. Chem. Neuroanat. 3, 309–323.

    PubMed  CAS  Google Scholar 

  • Fuller, R. and Hemrick-Luecke, S. (1980) Long-lasting depletion of striatal dopamine by a single injection of amphetamine in iprindole-treated rats.Science 209, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R., Hemrick-Luecke, S. and Ornstein, P. (1992) Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist.Neuropharmacology 31, 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  • Futscher, B.W., Pieper, R.O., Barnes, D.M., Hanin, I. and Erickson, L.C. (1992) DNA-damaging and transcription terminating lesions induced by AF64 Ain vitro.J. Neurochem. 58, 1504–1509.

    Article  PubMed  CAS  Google Scholar 

  • Ghribi, O., Callebert, J., Plotkine, M. and Boulu, R.G. (1994) Competitive NMDA receptor blockers reduce striatal glutamate accumulation in ischaemia.Neuroreport 5, 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Ghribi, O., Callebert, J., Verrecchia, C, Plotkine, M. and Boulu, R.G. (1995) Blockers of NMDA-operated channels decrease glutamate and aspartate extracellular accumulation in striatum during forebrain ischaemia in rats.Pundam. Clin. Pharmacol. 9, 141–146.

    CAS  Google Scholar 

  • Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Graham, D.G., Tiffany, S.M., Bell Jr., W.R. and Gutknecht, W.R. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopa-mine, and related compounds toward CI300 neuroblastoma cellsin vitro.Mol. Pharmacol. 14, 644–653.

    PubMed  CAS  Google Scholar 

  • Greenaway, F.T., O’Gara, C.Y., Marchena, J.M., Poku, J.W., Urtiaga, J.G. and Zou, Y. (1991) EPR studies of spin-labeled bovine plasma amine oxidase: The nature of the substrate-binding site.Arch. Biochem. Biophys. 285, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Grzanna, R., Berger, U., Fritschy, J.M. and Geffard, M. (1989) The acute action of DSP-4 on central norepinephrine axons: Biochemical and immunohistochemical evidence for differential effects.J. Histochem. Cytochem. 37, 1435–1442.

    PubMed  CAS  Google Scholar 

  • Gulyaeva, N.V., Lazareva, N.A., Libe, M.L., Mitrokhina, M.V., Yu, M. and Walsh, T.J. (1996) Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A).Brain Res. 726, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Gunne, L.M., Haggerstrom, J.E. and Sjoquist, B. (1984) Association with persistent neuroleptic-induced dyskinesias of regional changes in brain GABA synthesis.Nature 309, 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Hanin, I. (1988) Role of the aziridinium moiety in thein vivo cholinotoxicity of ethylcholine aziridinium ion (AF64A).J. Neurosci. Methods 23, 107–113.

    Article  PubMed  Google Scholar 

  • Hanin, I. (1996) The AF64A model of cholinergic hypofunction: An update.Life Sci. 58, 1955–1964.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, G.R., Matsuda, L. and Gibb, J.W. (1987) Effects of cocaine on methamphetamine-induced neurochemical changes: Characterization of cocaine as a monoamine uptake blocker.J. Pharmacol. Exp. Ther. 242, 507–513.

    PubMed  CAS  Google Scholar 

  • Hargreaves, R.J., Rigby, M., Smith, D. and Hill, R.G. (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology.Br. J. Pharmacol. 110, 36–42.

    PubMed  CAS  Google Scholar 

  • Harvey, J. A. and McMaster, S.E. (1975) Fenfluramine: Evidence for a neurotoxic action on a long-term depletion of serotonin.Psychopharmacol. Commun. 1, 217–228.

    PubMed  CAS  Google Scholar 

  • Heikkila, R. and Cohen, G. (1971) A mechanism for toxic effects of 6-hydroxydopamine.Science 172, 1257–1258.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila, R. and Cohen, G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine: Potentiation by ascorbic acid.Mol. Pharmacol. 8, 241–248.

    PubMed  CAS  Google Scholar 

  • Heikkila, R.E. and Cohen, G. (1973) 6-Hydroxydopamine: Evidence for superoxide radical as an oxidative intermediate.Science 181, 456–457.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila, R.E., Manzino, L., Cabbat, F.S. and Duvoisin, R.C. (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors.Nature 311, 467–469.

    Article  PubMed  CAS  Google Scholar 

  • Ho, B.T., Meyer, A.L. and Taylor, D. (1973) Selective depletion of dopamine following O-methylation of 6-hydroxydopa-mine.Res. Commun. Chem. Pathol. Pharmacol. 6, 47–56.

    PubMed  CAS  Google Scholar 

  • Holzer, P. (1991) Capsaicin: Cellular targets, mechanisms of action, and selectivity for thin sensory neurons.Pharmacol. Rev. 43, 144–201.

    Google Scholar 

  • Hortnagl, H., Potter, P.E., Happe, K., Goldstein, S., Leventer, S., Wulfert, E. and Hanin, I. (1998) Role of the aziridinium moiety in thein vivo cholinotoxicity of ethylcholine aziridinium ion (AF64A).J. Neurosci. Methods 23, 107–113.

    Article  Google Scholar 

  • Hotchkiss, A.J. and Gibb, J.W. (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain.J. Pharmacol. Exp. Ther. 214, 257–262.

    PubMed  CAS  Google Scholar 

  • Igarashi, K., Kasuya, E, Fukui, M., Usuki, E. and Castagnoli Jr., N. (1995) Studies on the metabolism of haloperidol (HP): The role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following IP administration of HP.Life Sci. 57, 2439–2446.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Kato, T. and Fujita, K. (1988) Covalent binding of catechols to proteins through the sulphydryl group.Biochem. Pharmacol. 37, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz, D. and Kostrzewa, R. (1971) Selective action of 6-hydroxydopa on noradrenergic terminals: Mapping of preterminal axons of the brain.Life Sci. 10, 1329–1341.

    Article  CAS  Google Scholar 

  • Jancso, G., Kiraly, E. and Jancso-Gabor, A. (1978) Pharmacologically induced selective degeneration of chemosensitive sensory neurones.Nature 270, 741–743.

    Article  Google Scholar 

  • Jancso, G., Kiraly, E., Joo, E, Such, G. and Nagy, A. (1985) Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat.Neurosci. Lett. 59, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Janes, S., Mu, D., Wemmer, D., Smith, A.J., Kaur, S., Maltby, D. and Burlingame, A.L. (1990) A new redox cofactor in eukar-yotic enzymes: 6-Hydroxydopa at the active site of bovine serum amine oxidase.Science 248, 981–987.

    Article  PubMed  CAS  Google Scholar 

  • Jauch, D., Urbanska, E.M., Guidetti, P., Bird, E.D., Vonsattel, J.P., Whetsell Jr., W.O. and Schwarcz, R. (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: Focus on kynurenine aminotransferases.J. Neurol. Sci. 130, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Javitch, J. A., D’Amato, R.J., Strittmatter, S.M. and Snyder, S.H. (1985) Parkinsonism-mducing neurotoxin, N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci. USA 82, 2173–2177.

    Article  PubMed  CAS  Google Scholar 

  • Javitt, D.C. and Zukin, S.R. (1991) Recent advances in the phencyclidine model of schizophrenia.Am. J. Psychiatr. 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  • Jonsson, G., Hallman, H., Ponzio, F. and Ross, S. (1981) DSP4 (N-(2-chloroethyl)-N-ethyl~2-bromobenzylamine) — A useful denervation tool for central and peripheral noradrenaline neurons.Eur. J. Pharmacol. 72, 173–188.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R.N., Mitchell, M.J. and Harik, S.I. (1987) Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity.Proc. Natl. Acad. Sci. USA 84, 3521–3525.

    Article  PubMed  CAS  Google Scholar 

  • Keys, A. and Ellison, G. (1994) Continuous cocaine induces persisting alterations in dopamine overflow in caudate following perfusion with a Dl agonist.J. Neural. Trans., Gen. Sect. 97, 225–233.

    Article  CAS  Google Scholar 

  • Kleven, M.S. and Seiden, L.S. (1989) D-, L- and DL-fenfluramine cause long-lasting depletions of serotonin in rat brain.Brain Res. 505, 351–353.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, R.M. (1998) 6-Hydroxydopa, a catecholamine neurotoxin and endogenous excitotoxin at non-NMDA receptors. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press) pp. 109–129.

    Google Scholar 

  • Kostrzewa, R.M. and Harper, J.W. (1974) Effects of 6-hydroxydopa on catecholamine-containing neurons in brains of newborn rats.Brain Res. 69, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, R.M. and Jacobowitz, D. (1973) Acute effects of 6-hydroxydopa on central monoaminergic neurons.Eur. J. Pharmacol. 21, 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Kreuger, C.A. and Cook, D.A. (1975) Synthesis and adrenergic blocking properties of some alkylating analogs of bretylium.Arch. Int. Pharmacodyn. Ther. 218, 96–115.

    Google Scholar 

  • Langston, J.W. and Ballard, P.A. (1984) Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease.Can J. Neurol. Sci. 11, 160–165.

    PubMed  CAS  Google Scholar 

  • Langston, J.W., Ballard, P.A., Tetrud, J.W. and Irwin, I. (1983) Chronic parkinsonism in humans is due to a product of meperidine analog synthesis.Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J.W., Irwin, I., Langston, E.B. and Forno, L.S. (1984) Pargyline prevents MPTP-induced parkinsonism in primates.Science 225, 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  • Leventer, S.M., Wulfert, E. and Hanin, I. (1987) Time course of ethylcholine aziridinium ion (AF64A)-induced cholinotoxicityin vivo.Neuropharmacology 26, 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1966) The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells.Harvey Lect. 60, 217–259.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1987) The nerve growth factor 35 years later.Science 237, 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. and Angeletti, P.U. (1966) Second symposium on catecholamines. Modification of sympathetic function. Immunosympathectomy.Pharmacol. Rev. 18, 619–628.

    PubMed  CAS  Google Scholar 

  • Lew, R., Malberg, J.E., Ricaurte, G.A. and Seiden, L.S. (1998) Evidence for and mechanism of action of neurotoxicity of amphetamine related compounds. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 235–268.

    Google Scholar 

  • Lew, R., Sabol, K.E., Chou, C, Vosmer, G.L., Richards, J. and Seiden, L.S. (1996) Methylenedioxymethamphetamine (MDMA)-induced serotonin deficits are followed by partial recovery over a 52 week period. Part II: Radioligand binding and autoradiographic studies.J. Pharmacol. Exp. Ther. 276, 855–865.

    PubMed  CAS  Google Scholar 

  • Lew, R., Weisenberg, B., Vosmer, G. and Seiden, L.S. (1997) Combined phentermine/fenfluramine administration enhances depletion of serotonin from central terminal fields.Synapse 26, 36–45.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, R. (1984) Trail of ironies to Parkinson’s disease.Science 224, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A. and Rosenberg, P.A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders.N. Engl. J. Med. 330, 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Wang, Y. and Simon, S.A. (1996) Capsaicin activated currents in rat dorsal root ganglion cells.Pain 64, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Roghani, A. and Edwards, R.H. (1992) Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.Proc. Natl. Acad. Sci. USA 89, 9074–9078.

    Article  PubMed  CAS  Google Scholar 

  • Lorez, H. (1981) Fluorescence histochemistry indicates damage of striatal dopamine nerve terminals in rats after multiple doses of methamphetamine.Life Sci. 28, 911–916.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, D.R. and Newhouse, J.P. (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina.Arch. Ophthalmol. 58, 193–201.

    CAS  Google Scholar 

  • Lundstrom, J., Ong, H., Daly, J. and Creveling, C.R. (1973) Isomers of 2,4,5-trihydroxyphenethylamine (6-hydroxydo-pamine). Long-term effects of the accumulation of (3H)-norepinephrine in mouse heartin vivo.Mol. Pharmacol. 9, 505–513.

    PubMed  CAS  Google Scholar 

  • Ma, S., Lin, L., Rhagavan, R., Cohenour, R, Lin, P.Y.T., Bennet, J., Lewis, R.J., Kostrzewa, R., Lehr, R.E. and Blank, C.L. (1995)In vivo andin vitro studies on the neurotoxic potential of 6-hydroxydopamine analogs.J. Med. Chem. 38, 4087–4097.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik, S.P., Laev, H., Korenovsk, A. and Karpiak, S.E. (1988) Haloperidol alters rat CNS cholinergic system: Enzymatic and morphological analyses.Biol. Psychiatry 24, 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Marek, G.J., Vosmer, G. and Seiden, L.S. (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons.Brain Res. 513, 274–279.

    Article  PubMed  CAS  Google Scholar 

  • Meshul, C.K. and Casey, D.E. (1989) Regional, reversible ultrastructural changes in rat brain with chronic neuroleptic treatment.Brain Res. 489, 338–346.

    Article  PubMed  CAS  Google Scholar 

  • Meshul, C.K., Stallbaumer, R.K., Taylor, B. and Janowsky, A. (1994) Haloperidol-induced morphological changes in striatum are associated with glutamate synapses.Brain Res. 648, 181–195.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. and Chouinard, G. (1993) Loss of striatal cholinergic neurons as a basis for tardive dyskinesia and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia.Biol. sychiatry 4, 13–738.

    Google Scholar 

  • Mizuno, Y, Saito, T. and Sone, N. (1987a) Inhibition of ATP ynthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains.Neurosci. Lett. 81, 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, Y, Suzuki, K., Sone, N. and Saitoh, T. (1987b) Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains.Neurosci. Lett. 81, 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Mody, I. and MacDonald, J.F. (1995) NMDA receptor-dependent excitotoxicity: The role of intracellular Ca2+ release.Trends Pharmacol. Sci. 16, 356–359.

    Article  PubMed  CAS  Google Scholar 

  • Molliver, D.C. and Molliver, M.E. (1990) Anatomic evidence for a neurotoxic effect of (+/-)-fenfluramine upon serotonergic projections in the rat.Brain Res. 511, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Murray, T.K., Williams, J.L., Misra, A., Colado, M.I. and Green, A.R. (1996) The spin trap reagent PBN attenuates degeneration of 5-HT neurons in rat brain induced by p-chloroamphetamine but not fenfluramine.Neuropharmacology 35, 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  • Nwanze, E. and Jonsson, G. (1981) Amphetamine neurotoxicity on dopamine nerve terminals in the caudate nucleus of mice.Neurosci. Lett. 26, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate.Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. (1981) Kainic acid and other excitotoxins: A comparative analysis. In DiChiara, G. and Gessa, G.J. (Eds.),Glutamate as Neurotransmitter (New York: Raven Press), pp. 375–384.

    Google Scholar 

  • Olney, J.W, Ho, O.L. and Rhee, V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res. 14, 67–76.

    Article  Google Scholar 

  • Olney, J.W., Labruyere, J. and Price, M.T. (1989) Pathological changes induced in cerebrocortical neurons by phencycli-dine and related drugs.Science 244, 1360–1362.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., Labruyere, J., Wang, G., Wozniak, D.E, Price, M.T. and Sesma, M.A. (1991) NMDA antagonist neurotoxicity: Mechanism and prevention.Science 254, 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. and Sharpe, L.G. (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate.Science 166, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W, Zorumski, C.E, Stewart, G.R., Price, M.T, Wang, G.J. and Labruyere, J. (1990) Excitotoxicity of L-dopa and 6-OH-dopa: Implications for Parkinson’s and Huntington’s diseases.Exp. Neurol. 108, 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Ong, H.H., Creveling, C.R. and Daly, J.W. (1969) The synthesis of 2,4,5-trihydroxyphenylalanine (6-hydroxydopa). A centrally active norepinephrine-depleting agent.J. Med. Chem. 12, 458–462.

    Article  PubMed  CAS  Google Scholar 

  • Perl, T.M., Bedard, L., Kosatsky, T, Hockin, J.C., Todd, E.C.D. and Remis, R.S. (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid.N. Engl. J. Med. 322, 1775–1780.

    PubMed  CAS  Google Scholar 

  • Perry, K.W, Kostrzewa, R.M. and Fuller, R.W (1995) Persistence of long-lasting serotonin depletion by p-chloroamphe-tamine in rat brain after 6-hydroxydopamine lesioning of dopamine neurons.Biochem. Pharmacol. 50, 1305–1307.

    Article  PubMed  CAS  Google Scholar 

  • Porter, C.C., Totaro, J.A. and Stone, C.A. (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice.J. Pharmacol. Exp. Ther. 140, 308–316.

    PubMed  CAS  Google Scholar 

  • Potter, P.E., Tedford, C.E., Kindel, G.H. and Hanin, I. (1987) Inhibition of high affinity choline transport attenuates both cholinergic and noncholinergic effects of ethylcholine aziridinium (AF64A).Brain Res. 13, 238–244.

    Google Scholar 

  • Pranzatelli, M.R. (1998) Use of 5,6- and 5,7-Dihydroxytrypta-mine to lesion serotonin neurons. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 293–311.

    Google Scholar 

  • Pulsinelli, W., Sarokin, A. and Bucham, A. (1993) Antagonism of the NMDA and non-NMDA receptors in global versus focal brain ischemia.Prog. Brain Res. 96, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, PR., Krueger, M.J., Youngster, S.K., Gluck, M.R., Casida, J.E. and Singer, T.P. (1991) Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase.J. Neurochem. 56, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard, J.E, Daniels, A.J. and Painter, G.R. (1990) Carrier-independent entry of 1-methyl-4-phenylpyridinium (MPP+) into adrenal chromaffin cells as a consequence of charge derealization.Biochem. Biophys. Res. Commun. 168, 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard Jr., J.E, Daniels, A.J. and Viveros, O.H. (1988) Potentiation by reserpine and tetrabenazine of brain catecholamine depletions by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in the mouse: Evidence for subcellular sequestration as basis for cellular resistance to the toxicant.Neurosci. Lett. 90, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard Jr., J.F., Diliberto Jr., E.J., Viveros, O.H. and Daniels, A.J. (1987) Subcellular compartmentalization of 1-methyl-4-phenypyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells.Proc. Natl. Acad. Sci. USA 84, 8160–8164.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G.P., Brown, J.E., McCall, J.E. and McKay, A.V.P. (1992) Dopamine receptor abnormalities in the striatum and pallidum in tardive dyskinesia: A post mortem study.J. Neural. Transm. 87, 225–230.

    Article  CAS  Google Scholar 

  • Riachi, N.J., Arora, P.K., Sayre, L.M. and Harik, S.I. (1988) Potent neurotoxic fluorinated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs as potential probes in models of Parkinson’s disease.J. Neurochem. 50, 1319–1321.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G., Bryan, G., Strauss, L., Seiden, L. and Schuster, C. (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals.Science 229, 986–988.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G.A., Guillery, R.W., Seiden, L.S., Schuster, C.R. and Moore, R.Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain.Brain Res. 235, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G.A., Schuster, C.R. and Seiden, L.S. (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: A regional study.Brain Res. 193, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R.C., Gaither, L.A., Gao, X.M., Kashyap, S.M. and Tamminga, C.A. (1995) Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum.Synapse 20, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Rollema, H., Booth, R.G. and Castagnoli Jr., N. (1988)In vivo dopaminergic neurotoxicity of the 2-ß-methylcarbolinium ion, a potential endogenous MPP+ analog.Eur. J. Pharmacol. 153, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Rollema, H., Skolnik, M., D’Engelbronner, J., Igarashi, K., Usuki, E. and Castagnoli Jr., N. (1994) MPP-like neurotoxicity of a pyridinium metabolite derived from haloperidol:In vivo microdialysis andin vitro mitochondrial studies.J. Pharmacol. Exp. Ther. 268, 380–387.

    PubMed  CAS  Google Scholar 

  • Rosenberg, P. A., Loring, R., Xie, Y., Zaleskas, V. and Aizemnan, E. (1991) 2,4,5-Trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin.Proc. Natl. Acad. Sci. USA 88, 4865–4869.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S.B. (1976) Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart.Br. J. Pharmacol. 58, 521–527.

    PubMed  CAS  Google Scholar 

  • Ross, S.B. and Renyi, A.L. (1976) On the long-lasting inhibitory effect ofN-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on the active uptake of noradrenaline.J. Pharm. Pharmacol. 28, 458–459.

    PubMed  CAS  Google Scholar 

  • Rossner, S., Schliebs, R., Perez-Polo, J.R., Wiley, R.G. and Bigi, V. (1995) Differential changes in cholinergic markers from selected brain regions after specific immunolesion of the rat cholinergic basal forebrain system.J. Neurosci. Res. 40, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S.M. and Olney, J.W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, L., Martone, M., Linder, J. and Groves, P. (1990) Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of rats.Brain Res. 518, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, L.J., Martone, M., Linder, J. and Groves, P. (1988) Cocaine, in contrast to d-amphetamine, does not cause axo-nal terminal degeneration in neostriatum and agranular frontal cortex of Long-Evans rats.Life Sci. 43, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Rylett, R.J. and Colhoun, E.H. (1984) An evaluation of irreversible inhibition of synaptosomal high-affinity choline transport by choline mustard aziridinium ion.J. Neurochem. 43, 787–794.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, C. and Jonsson, G. (1972a) Degeneration of central and peripheral noradrenaline neurons produced by 6-hydroxy-DOPA.J. Neurochem. 19, 1561–1575.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, C. and Jonsson, G. (1972b) Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenaline neurons.Brain Res. 40, 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Prieto, J., Budd, D.C., Herrero, I., Vazquez, E. and Nicholls, D.G. (1996) Presynaptic receptors and control of glutamate exocytosis.Trends Neurosci. 19, 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, K, Schnaar, R.L., McKinney, M., Hanin, I., Fisher, A. and Coyle, J.T. (1985) AF64A: An active site directed irreversible inhibitor of choline acetyltransferase.J. Neurochem. 44, 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Sanders-Bush, E., Bushing, J.A. and Sulser, F. (1975) Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms.J. Pharmacol. Exp. Ther. 192, 33–41.

    PubMed  CAS  Google Scholar 

  • Sanders-Bush, E., Bushing, J.A. and Sulser, F. (1972) Long-term effects of p-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid in brain.Eur. J. Pharmacol. 20, 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C, Walker, S., Wogulis, M., Yednock, T., Games, D. and Seubert, P. (1999) Immunization with amyloid-ß attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Schliebs, R. (1998) Basal forebrain cholinergic dysfunction-experimental approaches and the diseased brain.Intl. J. Dev. Neurosci. 16, 591–593.

    Article  CAS  Google Scholar 

  • Schmidt, C.J. and Taylor, V.L. (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine.Biochem. Pharmacol. 36, 4095–4102.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, C.J., Wu, L. and Lovenberg, W. (1986) Methylene-dioxymethamphetamme: A potentially neurotoxic amphetamine analogue.Eur. J. Pharmacol. 124, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D.E., Ebert, M.H., Lynn, J.C. and Whetsell Jr., W.O. (1997) Attenuation of 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity by deprenyl in organotypic canine substantia nigra cultures.J. Neural. Transm. 104, 875–885.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, C.J., Ritter, J.K., Sonsalla, P.K., Hanson, G.R. and Gibb, J.W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine.J. Pharmacol. Exp. Ther. 233, 539–544.

    PubMed  CAS  Google Scholar 

  • Seiden, L.S., Fischman, M.W. and Schuster, C.R. (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys.Drug Alcohol Depend. 1, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Seiden, L.S. and Ricaurte, G. (1987) Neurotoxicity of methamphetamine and related drugs. In Meltzer, H.Y. (Ed.),Psychopharmacology: The Third Generation of Progress (New York: Raven), pp. 359–365.

    Google Scholar 

  • Seiden, L.S. and Vosmer, G. (1984) Formation of 6-hydroxy-dopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine.Pharmacol. Biochem. Behav. 21, 29–31.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, R.R., Jasper, P., Hall, J., Noble, L. and Sagar, S.M. (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex.Ann. Neurol. 30, 801–809.

    Article  PubMed  CAS  Google Scholar 

  • Siman, R. and Noszek, J.C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdownin vivo.Neuron 1, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Singer, T.P., Salach, J.L., Castagnoli Jr., N. and Trevor, A.J. (1986) Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases.Biochem. J. 235, 785–789.

    PubMed  CAS  Google Scholar 

  • Sonsalla, P., Nicklas, W. and Heikkila, R. (1989) Role for excitatory amino acids in methamphetamine-induced nigro-striatal dopaminergic toxicity.Science 243, 398–400.

    Article  PubMed  CAS  Google Scholar 

  • Spenser, P.S., Nunn, P.B., Hugon, J., Ludolph, A.C., Ross, M.S., Dwijendra, N.R. and Robertson, R.C. (1987) Guam amyotrophic lateral sclerosis-parkinsonian-dementia linked to a plant excitant neurotoxin.Science 237, 517–522.

    Article  Google Scholar 

  • Spenser, P.S., Roy, D.N., Ludolph, A., Hugon, J., Dwivedi, M.P and Schaumburg, H.H. (1986) Lathyrism: Evidence for role of the neuroexcitatory aminoacid BOAA.Lancet 2(8515), 1066–1067.

    Article  Google Scholar 

  • Springer, J.E. (1988) Nerve growth factor receptors in the central nervous system.Exp. Neurol. 102, 354–365.

    Article  PubMed  CAS  Google Scholar 

  • Steranka, L.R. and Sanders, B.E. (1980) Long-term effects of continuous exposure to amphetamine on brain dopamine oncentration and synaptosomal uptake in mice.Eur. J. Pharmacol. 65, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Stern-Bach, Y., Keen, J.N., Bejerano, M., Steiner-Mordoch, S., Wallach, M., Findlay, J.B.C. and Schuldiner, S. (1992) Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium.Proc. Natl. Acad. Sci. USA 89, 9730–9733.

    Article  PubMed  CAS  Google Scholar 

  • Stone, C.A., Stavorski, J.M., Ludden, C.T., Wengler, H.C., Ross, C.A., Totaro, J.A. and Porter, C.C. (1963) Comparison of some pharmacological effects of certain 6-substituted dopamine derivatives with reserpine, guanethidine and metaraminol.J. Pharmacol. Exp. Ther. 142, 147–156.

    PubMed  CAS  Google Scholar 

  • Stone, D.M., Johnson, M., Hanson, G.R. and Gibb, J.W. (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 247, 79–87.

    PubMed  CAS  Google Scholar 

  • Subramanyam, B., Pond, S.M., Eyles, D.W., Whiteford, H.A., Fouda, H.G. and Castagnoli Jr., N. (1991a) Identification of a potentially neurotoxic pyridinium metabolite in the urine of schizophrenic patients treated with haloperidol.Biochem. Biophys. Res. Commun. 181, 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam, B., Rollema, H., Woolf, T. and Castagnoli Jr., N. (1990) Identification of a potentially neurotoxic pyridinium metabolite of haloperidol in rats.Biochem. Biophys. Res. Commun. 166, 238–244.

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam, B., Woolf, T. and Castagnoli Jr., N. (1991b) Studies on thein vitro conversion of haloperidol to a potentially neurotoxic pyridinium metabolite.Chem. Res. Toxicol. 4, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Szallasi, A. (1988) Toxic vanilloids. In Kostrzewa, R.M. (Ed.)Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 385–398.

    Google Scholar 

  • Szallasi, A. and Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms.Pharmacol. Rev. 51, 159–212.

    PubMed  CAS  Google Scholar 

  • Szallasi, A. and Blumberg, P.M. (1996) Vanilloid receptors: New insights enhance potential as a therapeutic target.Pain 68, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Szolcsanyi, J., Joo, F. and Jancso-Gabor (1971) Mitochondrial changes in preoptic neurones after capsaicin desensitization of the hypothalamic thermodetectors in rats.Nature 299, 116–117.

    Article  Google Scholar 

  • Tabatabaie, T. and Dryhurst, G. (1992) Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: Mechanistic insights.J. Med. Chem. 35, 2261–2273.

    Article  PubMed  CAS  Google Scholar 

  • Tabatabaie, T and Dryhurst, G. (1998) Molecular mechanisms of action of 5,6- and 5,7-dihydroxytryptamine. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 269–291.

    Google Scholar 

  • Teitelbaum, J.S., Zatorre, R.J., Carpenter, S., Gendron, D., Evans, A.C., Gjedde, A. and Cashman, N.R. (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels.N. Engl. J. Med. 25, 1781–1787.

    Article  Google Scholar 

  • Tetrud, J.W. and Langston, J.W. (1992) Tremor in MPTP-induced parkinsonism.Neurology 42, 407–410.

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Barde, Y.A., Edgar, D., Hatanaka, H., Otten, U. and Schwab, M. (1979) Mechanism of action and possible sites of synthesis of nerve growth factor.Progr. Brain Res. 51, 95–107.

    Article  CAS  Google Scholar 

  • Thoenen, H. and Tranzer, J.P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.Naunyn-Schmiedeberg’s Arch. Pharmacol. Exp. Pathol. 261, 271–288.

    Article  CAS  Google Scholar 

  • Tranzer, J.P. and Thoenen, H. (1967) Ultramorphologische Veranderungen der sympatischen Nervendigunden der Katze nach Vorbehandlung mit 5- und 6-hydroxydopamin.Naunyn-Scmiedeberg’s Arch. Pharmacol. Exp. Pathol. 257, 343–344.

    Article  Google Scholar 

  • Tranzer, J.P. and Thoenen, H. (1968) An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine.Experientia 24, 155–156.

    Article  PubMed  CAS  Google Scholar 

  • Tranzer, J.P. and Thoenen, H. (1973) Selective destruction of adrenergic nerve terminals by chemical analogues of 6-hydroxydopamine.Experientia 29, 314–315.

    Article  PubMed  CAS  Google Scholar 

  • Turski, W.A., Gramsbergen, J.B., Traitler, H. and Schwarcz, R. (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine.J. Neurochem. 52, 1629–1636.

    Article  PubMed  CAS  Google Scholar 

  • Uney, J.B. and Marchbanks, R.M. (1987) Specificity of ethylcho-line mustard aziridinium ion as an irreversible inhibitor of choline transport in cholinergic and noncholinergic tissue.J. Neurochem. 48, 1673–1676.

    Article  PubMed  CAS  Google Scholar 

  • Urbanska, E., Ikonomidou, C, Sielucka, M. and Turski, W.A. (1991) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum.Synapse 9, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Urbanska, E.M., Dekundy, A., Kleinrok, Z., Turski, W.A. and Czuczwar, S.J. (1998) Glutamatergic receptor agonists and brain pathology. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 329–354.

    Google Scholar 

  • Usuki, E., Pearce, R., Parkinson, A. and Castagnoli Jr., N. (1996) Studies on the conversion of haloperidol and its tetrahy-dropyridium metabolites by human liver microsomes.Chem. Res. Toxicol. 9, 800–806.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.C., Carelli, R.M. and Jarvis, M.F. (1986) Ascorbic acid reduces the dopamine depletion induced by metham-phetamine and the 1-methyl-4-phenyl pyridinium ion.Neuropharmacology 25, 559–561.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G., Lucot, J., Chuster, C. and Seidell, L. (1983) Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes.Brain Res. 270, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.C., Ricaurte, G.A., Johanson, C.E., Schuster, C.R. and Seiden, L.S. (1980a) Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate.Neurology 30, 547–550.

    PubMed  CAS  Google Scholar 

  • Wagner, G.C., Ricaurte, G.A., Seiden, L.S., Schuster, C.R., Miller, R.J. and Westley, J. (1980b) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 181, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.C., Schuster, C.R. and Seiden, L.S. (1979) Methamphetamine induced changes in brain catecholamines in rats and guinea pigs.Drug Alcohol Depend. 4, 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T.J., Herzog, C, Grandhi, C., Stackman, R.W. and Wiley, R.G. (1996) Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits.Brain Res. 726, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J., Goldberg, M.P. and Choi, D.W. (1986) Ketamine protects cultured neocortical neurons from hypoxic injury.Brain Res. 380, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Westlund, K.N., Denney, R.M., Kochersperger, L.M., Rose, R.M. and Abell, C.W. (1985) Distinct monoamine oxidase A and B populations in primate brain.Science 230, 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Whetsell Jr., W.O. (1997) Current concepts of excitotoxicity.J. Neuropathol. Exp. Neurol. 55, 1–13.

    Article  Google Scholar 

  • Wieloch, T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist.Science 230, 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Wieloch, X, Lindvall, O., Blomquist, P. and Gage, F.H. (1985) Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path.Neurol. Res. 7, 14–26.

    Google Scholar 

  • Wiley, R.G. (1992) Neural lesioning with ribosome-inactiva ting proteins: Suicide transport and immunolesioning.Trends Neurosci. 15, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J., Bevan, S. and Campbell, E.A. (1995) Capsaicin and pain mechanisms.Br. J. Anaesthesia 75, 157–168.

    CAS  Google Scholar 

  • Wozniak, D.E, Brosnan-Watters, G., Nardi, A., McEwen, M., Corso, T.D., Olney, J.W. and Fix, A.S. (1996) MK-801 neurotoxicity in male mice — Histologic effects and chronic impairment in spatial learning.Brain Res. 707, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Wu, E.Y., Smith, M.T., Bellomo, G. and DiMonte, D.A. (1990) Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes.Arch. Biochem. Biophys. 282, 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, M., Yagi, N., Otsuka, M., Yanaihara, A. and Yanaihara, N. (1986) Inhibitory effects of galanin on the isolated spinal cord of the newborn rat.Neurosci. Lett. 70, 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Zaczek, R., Battaglia, G., Culp, S., Appel, N.M., Contrera, J.F. and DeSouza, E.B. (1990) Effects of repeated fenfluramine administration on indices of monoamine function in rat brain: Pharmacokinetic, dose response, regional specificity and time course data.J. Pharmacol. Exp. Titer. 253, 104–112.

    CAS  Google Scholar 

  • Zieher, L.M. and Jaim-Etcheverry, G. (1980) Neurotoxicity ofN-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) on noradrenergic neurons is mimicked by its cyclic aziridinium derivative.Eur. J. Pharmacol. 65, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Zieher, L.M. and Jaim-Etcheverry, G. (1973) Regional differences in the long-term effect of neonatal 6-hydroxydopa treatment on rat brain noradrenaline.Brain Res. 60, 199–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kostrzewa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostrzewa, R.M. Selective neurotoxins, chemical tools to probe the mind: The first Thirty years and beyond. neurotox res 1, 3–25 (1999). https://doi.org/10.1007/BF03033336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033336

Keywords

Navigation