Skip to main content
Log in

Operability and feasibility of ethanol production by immobilizedZymomonas mobilis in a fluidized-bed bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Studies have been carried out using immobilized Z.mobilis in fluidized-bed bioreactors and have emphasized operation during high productivity and conversion. The bacteria are immobilized within small uniform beads (~1 to 1.5-mm diam) of K-carrageenan at cell loadings of 15-50 g (dry wt)/L. Conversion and productivity were measured under a variety of conditions, including feedstocks, flow rates, temperature, pH, and column sizes (up to 2.5 m tall). Volumetric productivities of 50-120 g EtOH/h-L reactor volume have been achieved. Productivities of 60 g/h-L are demonstrated from a 15% feed with residual glucose concentrations of less than 0.1% and 7.4% EtOH in the tallest fermentor. Among feeds of 10, 15, and 20% dextrose, the 15% gave the highest productivity and avoided substrate inhibition. A temperature of 30°C and pH 5 were the optimum conditions. The ethanol yield was shown to be nearly constant at 0.49 g EtOH/g glucose, or 97% of the theoretical under a variety of conditions and transients. The biocatalyst beads have been shown to remain active for two months. Nonsterile feed has been used for weeks without detrimental contamination. The advantages of this advanced bioreactor system over conventional batch technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Godia, F., Casas, C., and Sola, C. (1987),Process Biochem. 22(2), 43–48.

    CAS  Google Scholar 

  2. Rogers, P. L., Lee, K. J., and Tribe, D. E. (1980),Process Biochem. 15(6), 7–11.

    CAS  Google Scholar 

  3. Kuriyama, H., Seiko, Y., Murakami, T., Kobayashi, H., and Sonoda, Y. (1985),J. Ferment. Technol. 63(2), 159–65.

    CAS  Google Scholar 

  4. Inloes, D. S., Michaels, A. S., Robertson, C. R., and Matin, A. (1985),Appl. Microbiol. Biotech. 23, 85–91.

    Article  CAS  Google Scholar 

  5. Silman, R. W. (1984),Biotech. Bioeng. 26, 247–51.

    Article  CAS  Google Scholar 

  6. Bajpai, P. K., and Margaritis, A. (1985),Enzyme Microb. Technol. 7, 462–64.

    Article  CAS  Google Scholar 

  7. Scott, C. D., (1983),Biotech. Bioeng. Symp. 13, 287–298.

    CAS  Google Scholar 

  8. Cysewski, G. R., and Wilke, C. R. (1978),Biotech. Bioeng. 20, 1421–44.

    Article  CAS  Google Scholar 

  9. Samejima, H., Nagashima, M., Azuma, M., Noguchi, S., and Inuzuka, K. (1984),Annals of the NY Acad. Sci. 434, 394–405.

    Article  CAS  Google Scholar 

  10. Lee, K. J., and Rogers, P. L. (1983),Chem. Engr. 27, B31-B38.

    Article  CAS  Google Scholar 

  11. Grote, W., and Rogers, P. L. (1985),J. Ferment. Technol. 3, 287–90.

    Google Scholar 

  12. Lee, K. J., Skotnicki, M. L., Tribe, D. E., and Rogers, P. L. (1981),Biotech. Lett. 3, 291–96.

    Article  CAS  Google Scholar 

  13. Grote, W., Lee, K. J., and Rogers, P. L. (1980),Biotechnol. Lett. 2, 481–486.

    Article  CAS  Google Scholar 

  14. Worden, R. M. (1982), “A Kinetic Study of Ethanol Production byZymomonas mobilis,” MS thesis, Univ. of Tennessee, 1982. Also available as ORNL/TM-8722, Martin Marietta Energy Systems, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  15. Swings, J., and DeLey, J. (1977),Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  16. Davison, B. H., and Scott, C. D. (1986),Biotech. and Bioeng. Symp. 17, 629–632.

    CAS  Google Scholar 

  17. Jain, V. K., Toran-Diaz, I., and Baratti, J. (1985),Biotech. Bioeng. 27, 273–279.

    Article  CAS  Google Scholar 

  18. Sola, C., Casas, C., Godia, F., Poch, M., and Serra, A. (1986),Biotech. Bioeng. Symp. 17, 519–534.

    CAS  Google Scholar 

  19. Scott, C. D. (1987),Ann. NY Acad. Sci. 501, 487–493.

    Article  Google Scholar 

  20. Scott, C. D., and Hancher, C. W. (1976),Biotech. Bioeng. 18, 1393–1403.

    Article  CAS  Google Scholar 

  21. Leuenberger, H. G. W. (1972),Arch. Mikrobiol. 83, 347–358.

    Article  CAS  Google Scholar 

  22. Fein, Jared E., et al. (1983),Biotech. Lett. 5, pp. 1–6.

    CAS  Google Scholar 

  23. Belaich, J. P., and Jenez, J. C. (1965),J. Bacteriol. 89, pp. 195–1200.

    Google Scholar 

  24. Lyness, E., and Doelle, H. W. (1980),Biotechnol. Lett. 2, 549–554.

    Article  CAS  Google Scholar 

  25. Laudrin, I., and Goma, G. (1982),Biotechnol. Lett. 4, 537–542.

    Article  CAS  Google Scholar 

  26. Luong, J. H. T. (1985),Biotech. Bioeng. 27, 1652–61.

    Article  CAS  Google Scholar 

  27. Bajpai, P. K., and A. Margaritis (1986),Biotech. Bioeng. 28, 824–28.

    Article  CAS  Google Scholar 

  28. Davison, B. H., and T. L. Donaldson (1987), “Biotechnology Processes: Scale-Up and Mixing,” Ho, C. S., and Oldshue, J. Y., eds., AIChE Publ.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, B.H., Scott, C.D. Operability and feasibility of ethanol production by immobilizedZymomonas mobilis in a fluidized-bed bioreactor. Appl Biochem Biotechnol 18, 19–34 (1988). https://doi.org/10.1007/BF02930815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930815

Index Entries

Navigation