Skip to main content
Log in

Enhanced cofermentation of glucose and xylose by recombinantSaccharomyces yeast strains in batch and continuous operating modes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agricultural residues, such as grain by-products, are rich in the hydrolyzable carbohydrate polymers hemicellulose and cellulose; hence, they represent a readily available source of the fermentable sugars xylose and glucose. The biomass-to-ethanol technology is now a step closer to commercialization because a stable recombinant yeast strain has been developed that can efficiently ferment glucose and xylose simultaneously (coferment) to ethanol. This strain, LNH-ST, is a derivative ofSaccharomyces yeast strain 1400 that carries the xylose-catabolism encoding genes ofPichia stipitis in its chromosome. Continuous pure sugar cofermentation studies with this organism resulted in promising steady-state ethanol yields (70.4% of theoretical based on available sugars) at a residence time of 48 h. Further studies with corn biomass pretreated at the pilot scale confirmed the performance characteristics of the organism in a simultaneous saccharification and cofermentation (SSCF) process: LNH-ST converted 78.4% of the available glucose and 56.1% of the available xylose within 4 d, despite the presence of high levels of metabolic inhibitors. These SSCF data were reproducible at the bench scale and verified in a 9000-L pilot scale bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philippidis, G. P. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds, American Chemical Society, Washington, DC, pp. 188–217.

    Google Scholar 

  2. Dow Jones News Service. Amoco, Stone & Webster in Biomass Conversion Partnership. Oct. 18, 1995.

  3. Philippidis, G. P., Spindler, D. D., and Wyman, C. E. (1992),Appl. Biochem. Biotechnol. 34/35, 543–556.

    Article  Google Scholar 

  4. Laplace, J. M., Delgenes, J. P., Moletta, R., and Navarro, S. M. (1991),Biotech. Let.,13, 445–150.

    Article  CAS  Google Scholar 

  5. Jeffries, T. W. and Kurtzman, C. P. (1994),Enzyme Microb. Technol. 16, 922–932.

    Article  CAS  Google Scholar 

  6. Olsson, L. and Hahn-Hägerdal, B. (1996),Enzyme Microb. Technol. 18, 312–231.

    Article  CAS  Google Scholar 

  7. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995),Science 267, 240–243.

    Article  CAS  Google Scholar 

  8. Ho, N. W. Y., Chen, Z. D. and Brainard, A. (1993), inProceedings of Tenth International Conference on Alcohols, Colorado Springs, CO, p. 738.

    Google Scholar 

  9. Kötter, P. and Ciriacy, M. (1993),Appl. Microbiol. Biotechnol. 38, 776–783.

    Article  Google Scholar 

  10. Ho, N. W. Y. and Tsao, G. T. (dy1995), PCT patent No. WO 95/13362.

  11. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., and Hahn-Hägerdal, B., (1995),Appl. Environ. Microbiol. 61, 4181–4190.

    Google Scholar 

  12. Ho, N. W. Y. and Chen, Z. D. (1996), Patent pending.

  13. Stewart, G. G., Panchal, C. J., and Rusell, I. (1982),Brew. Distill. Int. 12, 33.

    Google Scholar 

  14. Ghose, T. K. (1987),Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  15. Hatzis, C., Riley, C., and Philippidis, G. P. (1996),Appl. Biochem. Biotechnol. 57/58, 443–459.

    CAS  Google Scholar 

  16. Ramos, M. T. and Madeira-Lopes, A. (1990),Biotech. Let. 12, 229–234.

    Article  CAS  Google Scholar 

  17. Van Zyl, C., Prior, B. A., and Du Perez, J. (1991),Enzyme Microb. Technol. 13, 82–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toon, S.T., Philippidis, G.P., Ho, N.W.Y. et al. Enhanced cofermentation of glucose and xylose by recombinantSaccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63, 243–255 (1997). https://doi.org/10.1007/BF02920428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920428

Index Entries

Navigation