Skip to main content
Log in

Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency ofE. coli

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Cultures of Escherichia coli grown in space reached a 25% higher average final cell population than those in comparably matched ground controls (p<0.05). However, both groups consumed the same quantity of glucose, which suggests that space flight not only stimulated bacterial growth as has been previously reported, but also resulted in a 25% more efficient utilization of the available nutrients. Supporting experiments performed in “simulated weightlessness” under clinorotation produced similar trends of increased growth and efficiency, but to a lesser extent in absolute values. These experiments resulted in increases of 12% and 9% in average final cell population (p<0.05), while the efficiency of substrate utilization improved by 6% and 9% relative to static controls (p=0.12 and p<0.05, respectively). In contrast, hypergravity, produced by centrifugation, predictably resulted in the opposite effect — a decrease of 33% to 40% in final cell numbers with corresponding 29% to 40% lower net growth efficiencies (p<0.01). Collectively, these findings support the hypothesis that the increased bacterial growth observed in weightlessness is a result of reduced extracellular mass transport that occurs in the absence of sedimentation and buoyancy-driven convection, which consequently also improves substrate utilization efficiency in suspended cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouloc, P., D’Ari, R.: Escherichia coli Metabolism in Space. J. Gen. Microbiol., vol. 137, p. 2839 (1991).

    Google Scholar 

  2. Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., Woldringh, C.: Growth and Division of Escherichia coli under Microgravity Conditions. Res. Microbiol., vol. 145, p. 111 (1994).

    Article  Google Scholar 

  3. Thévenet, D., D’Ari, R., Bouloc, P.: The SIGNAL Experiment in BIORACK: Escherichia coli in Microgravity. Biotech., vol. 47, p. 89 (1996).

    Article  Google Scholar 

  4. Manko, V. G., Kordyum, V. A., Vorob’yev, L. V., Konshin, N. I., Nechitaylo, G. S.: Microbiology: Changes over Time in Proteus vulgaris Cultures Grown in the ROST-4M2 Device on the Salyut-7 Space Station. NASA Contractor Report 3922 (14), p. 70 (1987).

  5. Mennigmann, H. D., Lange, M.: Growth and Differentiation of Bacillus subtilis under Microgravity Conditions. Naturwissenschaften, vol. 73, p. 415 (1986).

    Article  Google Scholar 

  6. Klaus, D., Simske, S., Todd, P., Stodieck, L.: Investigation of Space Flight Effects on Escherichia coli and a Proposed Model of Underlying Physical Mechanisms. Microbiology, vol. 143, p. 449 (1997).

    Article  Google Scholar 

  7. Brown, R. B.: Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia coli. PhD thesis, University of Colorado, Boulder (1999).

    Google Scholar 

  8. Ciferri, O., Tiboni, O., Pasquale, G. D., Orlandoni A. M., Marchesi M. L.: Effects of Microgravity on Genetic Recombination in Escherichia coli. Naturwissenschaften, vol. 73, p. 418 (1986).

    Article  Google Scholar 

  9. Kordium, V. A., Mashinsky, A. L., Manko, V. G., Babski, V. G., Sytnik, K. M., Kordyum, E. L., Bochagova, O. P., Nefedov, Y. L., Kozharinov, V. I., Grechkov, G. M.: Growth and Cell Structure of Proteus vulgaris when Cultivated in Weightlessness in the Cytos Apparatus. Life Sci. Space Res., vol. 18, p. 213 (1980).

    Google Scholar 

  10. Mattoni, R. H. T.: Space-Flight Effects and Gamma Radiation Interaction on Growth and Induction of Lysogenic Bacteria. BioScience, vol. 18, p. 602 (1968).

    Article  Google Scholar 

  11. Klaus, D. M., Todd, P., Schatz, A.: Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res., vol. 21, p. 1315 (1998).

    Article  Google Scholar 

  12. Lam, K. S., Mamber, S., Pack, E., Forenza, S., Fernandes, P., Klaus, D.: The Effects of Space Flight on the Production of Monorden by Humicola fucoatra WC5157 in Solid State Fermentation. Appl. Microbio. Biotechnol., vol. 49, p. 579 (1998).

    Article  Google Scholar 

  13. Klaus, D. M.: Microgravity and its Implications for Fermentation Biotechnology. Trends in Biotech., vol. 16, p. 369 (1998).

    Article  Google Scholar 

  14. Walther, I., Bechler, B., Müller, O., Hunzinger, E., Cogoli, A.: Cultivation of Saccharomyces cerevisiae in a Bioreactor in Microgravity, J. Biotech., vol. 47, p.113 (1996).

    Article  Google Scholar 

  15. Montgomery, P. O. B., Cook, J. E., Reynolds, R. C., Paul, J. S., Hayflick, L., Stock, D., Schulz, W. W., Kimsey, S., Thirolf, R. G., Rogers, T., Cambell, D.: The Response of Single Human Cells to Zero Gravity. In Vitro, vol. 14, p. 165 (1978).

    Article  Google Scholar 

  16. Yee, L., Blanch, H. W.: Recombinant Protein Expression in High Cell Density Fed-Batch Cultures of Escherichia coli. Biotechnology, vol. 10, p. 1550 (1992).

    Article  Google Scholar 

  17. Robbins, J. W., Taylor, K. B.: Optimization of Escherichia coli Growth by Controlled Addition of Glucose. Biotechnol. Bioeng., vol. 34, p. 1289 (1989).

    Article  Google Scholar 

  18. Gottschalk, G.: Bacterial Metabolism. Springer-Verlag, New York (1986).

    Google Scholar 

  19. Barford, J. P., Pamment N. B., Hall R. J.: Lag Phases and Transients. Microbial Population Dynamics, M. J. Bazin (ed.), CRC, Boca Raton (1982).

    Google Scholar 

  20. Vogel, D. H., Bonner, D. M.: Acetylornithinase of Escherichia coli: Partial Purification and some Properties. J. Biol. Chem., vol. 218, p. 97 (1956).

    Google Scholar 

  21. Pollard, J.: Theoretical Studies on Living Systems in the Absence of Mechanical Stress. J. Theoretical Biology, vol. 8, p. 113 (1965).

    Article  Google Scholar 

  22. Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., Lapchine, L.: Study of Minimal Inhibitory Concentration of Antibiotics on Bacteria Cultivated in vitro in Space (Cytos 2 Experiment). Aviat. Space Environ. Med., vol. 56, p. 748 (1985).

    Google Scholar 

  23. Tixador, R., Gasset, G., Ench, B., Moatti, N., Lapchine, L., Woldringh, C., Toorop, P., Moatti, J. P., Delmotte, F., Tap, G.: Behavior of Bacteria and Antibiotics under Space Conditions. Aviat. Space Environ. Med., vol. 65, p. 551 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.B., Klaus, D. & Todd, P. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency ofE. coli . Microgravity sci. Technol. 13, 24 (2002). https://doi.org/10.1007/BF02881678

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02881678

Keywords

Navigation