Skip to main content
Log in

Phenolic acids reduce the genotoxicity of acridine orange and ofloxacin inSalmonella typhimurium

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Naturally occurring plant phenolics,p-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA) and gentisic acid (GA) (25–100 nmol/L) had protective effects on acridine orange (AO; 216 μmol/L)- and ofloxacin (3 μmol/L)-induced genotoxicity inSalmonella typhimurium. FA, GA and CA exhibited a significant concentration-dependent protective effect against the genotoxicity of AO and ofloxacin, with the exception of PA, which at all concentrations tested abolished the AO and ofloxacin genotoxicity. UV spectrophotometric measurements showed the interaction of PA, FA, GA and CA with AO but not with ofloxacin; this interaction is obviously responsible for the reduction of AO-inducedS. typhimurium mutagenicity. In the case of ofloxacin the antimutagenic effect of PA, FA, GA and CA is assumed to be a result of their ability to scavenge reactive oxygen species (ROS) produced by ofloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bagchi D., Hassoun E., Bagchi M., Stohs S.: Protective effects of antioxidants against Endrin-induced hepatic lipid peroxidation, DNA damage and excretion of urinary lipid metabolites.Free Radic. Biol. Med. 15, 217–222 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Belicová A., Krajčovič J., Dobias J., Ebringer L.: Antimutagenicity of milk fermented byEnterococcus faecium.Folia Microbiol. 44, 513–518 (1999).

    Article  Google Scholar 

  • Cuvelier M.L., Richard H., Berset C.: Comparison of the antioxidative activity of some-phenols: structure-activity relationship.Biosci. Biotechn. Biochem. 56, 324–325 (1992).

    CAS  Google Scholar 

  • D'Aquino M., Buillion C., Chopra M., Devi D., Dunster C., James G., Niki E., Willson R.: Sulphydryl (thiol)-free radical formation, biochemically, by sonolysis, by radiolysis, and thermally: vitamin A, curcumin, muconic acid and related conjugated olefins as reference activity models.Methods Enzymol. 233, 34–36 (1994).

    Article  Google Scholar 

  • Ebringer L., Dobias J., Krajčovič J., Polónyi J., Križková L., Lahitová N.: Antimutagnes reduce ofloxacin-induced bleaching inEuglena gracilis.Mutat. Res. 359, 85–93 (1996).

    PubMed  Google Scholar 

  • Hermann M., Kapiotis S., Hofbauer R., Seelos C., Held I., Gemeiner B.: Salicylate promotes myeloperoxidase-initiated LDL oxidation: antagonization by its metabolite gentisic acid.Free Rad. Biol. Med. 26, 1253–1260 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hooper D.C., Wolfson J.S.: Mechanisms of quinolone action and bacterial killing, pp. 53–75 in D. C. Hooper, J.S. Wolfson (Eds):Quinolone Antimicrobial Agents. American Society for Microbiology, Washington (DC) 1993.

    Google Scholar 

  • Koshihara Y., Neichi T., Murota S., Lao A., Fujimoto Y., Tatsuno T.: Caffeic acid is a selective inhibitor for leucotriene biosynthesis.Biochim. Biophys. Acta 792, 92–97 (1984).

    PubMed  CAS  Google Scholar 

  • Križková L., Horniak L., Sláviková, S., Eberinger L.: Protective effect of sodium selenite on ofloxacin-induced loss of chloroplast DNA inEuglena gracilis.Folia Microbiol. 41, 329–332 (1996).

    Google Scholar 

  • Križková L., Nagy M., Polónyi J., Ebringer L.: The effect of flavonoids on ofloxacin-induced mutagenicity inEuglena gracilis.Mutat. Res. 416, 85–92 (1998).

    PubMed  Google Scholar 

  • Križková L., Nagy M., Polónyi J., Dobias J., Belicová A., Grančai D., Krajčovič J.: Phenolic acids inhibit chloroplast mutagenesis inEuglena gracilis.Mutat. Res. 469, 107–114 (2000).

    PubMed  Google Scholar 

  • Laranjinha J., Almeida A., Madeira V.: Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation.Biochem. Pharmacol. 48, 487–494 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Laranjinha J., Viera O., Madeira V., Almeida L.: Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumptionvs. regeneration.Arch. Biochem. Biophys. 323, 373–381 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Liu G.T., Zhang T.M., Wang B.E., Wang Y.W.: Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes.Biochem. Pharmacol. 43, 147–152 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Macheix J., Fleuriet A., Billot J.:Fruit Phenolics, CRC Press, Boca Raton (USA) 1990.

    Google Scholar 

  • Maron D.M., Ames B.N.: Revised methods for theSalmonella mutagenicity test.Mutat. Res. 113, 173–215 (1983).

    PubMed  CAS  Google Scholar 

  • Shahidi F., Wanasundara J.P.D.: Phenolic antioxidants.Crit. Rev. Food Sci. Nutr. 32, 67–103 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Suchý V., Nagy M., Tekedová D., Grančai D., Stará D.: Study of the constituents of the gee glue of the Slovak origin—VIII. Derivatives of dihydroflavone and caffeic acid.Farm. Obzor 62, 411–415 (1993).

    Google Scholar 

  • Tanaka T., Kojima T., Kawamori T., Yoshimi N., Mori H.: Chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis by a simple phenolic acid protocatechuic acid in rats.Cancer Res. 53, 2775–2779 (1993a).

    PubMed  CAS  Google Scholar 

  • Tanaka T., Kojima T., Kawamori T., Wang A., Suzui M., Okamoto K., Mori H.: Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring phenolic caffeic, ellagic, chlorogenic and ferulic acids.Carcinogenesis 14: 1321–1325 (1993b).

    Article  PubMed  CAS  Google Scholar 

  • Terao J., Karasawa H., Arai H., Nagao A., Suzuki T., Takama K.: Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution.Biosci. Biotech. Biochem. 57, 1204–1205 (1993).

    Article  CAS  Google Scholar 

  • Umezawa N., Arakane K., Ryu A., Mashiko S., Hirobe N., Nagano T.: Participation of reactive oxygen species in phototoxicity induced by quinolone antibacterial agents.Arch. Biochem. Biophys. 342, 275–281 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Vieira O., Escarqueil-Blanc I., Meilhac O., Basile J.P., Laranjinha J., Almeida L., Salvayre R., Negre-Salvayre A.: Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL.Brit. J. Pharmacol. 12, 565–573 (1998).

    Article  Google Scholar 

  • Zhou J., Ashoori F., Susuki S., Nishigaki I., Yagi K.: Protective effect of chlorogenic acid on lipid peroxidation induced in the liver of rats by carbon tetrachloride or60Co-irradiation.J. Clin. Biochem. Nutr. 15, 119–125 (1993).

    CAS  Google Scholar 

  • Zhou Y.C., Zheng R.L.: Phenolic compounds and an analog as superoxide anion scavengers and antioxidants.Biochem. Pharmacol. 42, 1177–1179 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belicová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belicová, A., Križková, L., Nagy, M. et al. Phenolic acids reduce the genotoxicity of acridine orange and ofloxacin inSalmonella typhimurium . Folia Microbiol 46, 511–514 (2001). https://doi.org/10.1007/BF02817994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817994

Keywords

Navigation