Skip to main content
Log in

Spinal cord myelin is vulnerable to decompression

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Spinal cord white matter is the major site of tissue damage resulting from decompression sickness (DCS or “the bends”). Damage is thought to result from bubble nucleation within the tissue. Why DCS occurs predominantly in the spinal cord and not in the brain is not known; neither is the exact pathological mechanism by which the spinal cord is damaged, nor how multiple sclerosis (MS)-like symptoms may ensue. To investigate the molecular basis of white matter damage, we subjected myelinated mouse tissues to varying durations of decompression, and then after recompression to one atmosphere, examined them for changes in myelin structure and composition. X-ray diffraction showed that the myelin period in spinal cord decreased by 4%, whereas those of optic and sciatic nerves were stable. The change in period was accompanied by a change in membrane bilayer profile—i.e., relative to control, the width of the bilayer decreased by ∼6 Å, whereas the interbilayer spaces each increased by ∼3 Å. The changes in electron density levels suggested a redistribution of matter from the interbilayer spaces into the lipid headgroup layers. By contrast with these structural changes, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance thin layer chromatography (HPTLC) revealed no noticeable change in myelin composition—i.e., there was no release of myelin-specific proteins or lipids. Our findings indicate that spinal cord myelin has an inherent structural vulnerability that may facilitate the targeting of this tissue during pressure changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bert P. (1878)Barometric Pressure. Researchers in Experimental Physiology. Masson, Paris (Hitchcock M. A. and Hitchcock F. A., trans.) Undersea Medical Society, Bethesda, MD (1978).

    Google Scholar 

  • Blaurock A. E. (1991) Reversible myelin swelling in response to anoxia.Neuro. Chem. (Life Sci. Adv. India) 10, 67–75.

    Google Scholar 

  • Boycott A. E., Damant G. C. C., and Haldane J. S. (1908) The prevention of compressed air illness.J. Hyg. 8, 342–443.

    CAS  Google Scholar 

  • Francis T. J. R., Pezeshkpour G. H., Dutka A. J., Hallenbeck J. M., and Flynn E. T. (1988) Is there a role for the autochthonous bubble in the pathogenesis of spinal cord decompression sickness?J. Neuropathol. Exp. Neurol. 47, 475–487.

    PubMed  CAS  Google Scholar 

  • Francis T. J. R., Pezeshkpour G. H., and Dutka A. J. (1989) Arterial gas embolism as a pathophysiologic mechanism for spinal cord decompression sickness.Undersea Biomed. Res. 16, 439–451.

    PubMed  CAS  Google Scholar 

  • Francis T. J. R., Griffin J. L., Homer L. D., Pezeshkpour G. H., Dutka A. J., and Flynn E. T. (1990) Bubble-induced dysfunction in acute spinal cord decompression sickness.J. Appl. Physiol. 68, 1368–1375.

    PubMed  CAS  Google Scholar 

  • Ganser A. L., Kerner A.-L., Brown B. J., Davisson M. T., and Kirschner D. A. (1988). A survey of neurological mutant mice. I. Lipid composition of myelinated tissue in known myelin mutants.Dev. Neurosci. 10, 99–122.

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck J. M., Bove A. A., and Elliott D. H. (1975) Mechanisms underlying spinal cord damage in decompression sickness.Neurology 25, 308–316.

    PubMed  CAS  Google Scholar 

  • Haymaker W. and Johnson A. D. (1955) Pathology of decompression sickness.Milit. Med. 177, 285–306.

    Google Scholar 

  • Hill L. and Macleod J. J. R. (1903) Caisson illness and diver's palsy. An experimental study.J. Hyg. (Cambridge) 3, 401–445.

    CAS  Google Scholar 

  • Hills B. A. (1993) Spinal decompression sickness: hydrophobic protein and lamellar bodies in spinal tissue.Undersea Hyperbaric Med. 20, 3–16.

    CAS  Google Scholar 

  • Hills B. A. (1994) Release of surfactant and a myelin proteolipid apoprotein in spinal tissue by decompression.Undersea Hyperbaric Med. 21, 95–102.

    CAS  Google Scholar 

  • Hills B. A. and James P. B. (1982) Spinal decompression sickness: mechanical studies and a model.Undersea Biomed. Res. 9, 185–201.

    PubMed  CAS  Google Scholar 

  • Inouye H. and Kirschner D. A. (1994) Membrane topology of PLP in CNS myelin: Evaluation of models.Neurochem. Res. 19, 975–981.

    Article  PubMed  CAS  Google Scholar 

  • James P. B. (1982). Evidence for subactute fat embolism as the cause of multiple sclerosis.Lancet 1, 380–386.

    Article  PubMed  CAS  Google Scholar 

  • Karthigasan J. and Kirschner D. A. (1988) Membrane interactions are altered in myelin isolated from central and peripheral nervous system tissues.J. Neurochem. 51, 228–236.

    Article  PubMed  CAS  Google Scholar 

  • Karthigasan J., Kosaras B., Nguyen J. T., and Kirschner D. A. (1994) Protein and lipid composition of radial component enriched CNS myelin.J. Neurochem. 62, 1203–1213.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner D. A. and Blaurock A. E. (1992) Organization, phylogenetic variations and dynamic transitions of myelin structure, inMyelin: Biology and Chemistry (Martenson R. E., ed.), CRC, Boca Raton, FL, pp. 3–78.

    Google Scholar 

  • Kirschner D. A., Ganser A. L., and Casper D. L. D. (1984) Diffraction studies of molecular organization and interactions in myelin membranes, inMyelin 2nd ed. (Morell P., ed.), Plenum, New York, pp. 51–95.

    Google Scholar 

  • Lees M. B. and Paxman S. A. (1974) Myelin proteins from different regions of the central nervous system.J. Neurochem. 23, 825–831.

    Article  PubMed  CAS  Google Scholar 

  • Loewenherz J. W. (1992) Pathophysiology and treatment of decompression sickness and gas embolism.J. Florida Med. Assoc. 79, 620–624.

    CAS  Google Scholar 

  • Maizel J. V. (1971) Polyacrylamide gel electrophoresis of viral proteins.Methods Virol. 5, 179–246.

    Google Scholar 

  • McIntosh T. J. and Robertson J. D. (1976) Observations on the effect of hypotonic solutions on the myelin sheath in the central nervous system.J. Mol. Biol. 100, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Moon R. E., Vann R. D., and Bennett P. B. (1995) The physiology of decompression illness.Sci. Am. 273, 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Norton W. T. and Poduslo S. E. (1973) Myelination in rat brain: method of myelin isolation.J. Neurochem. 21, 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Palmer A. C., Calder I. M., McCallum R. I., and Mastaglia F. L. (1981) Spinal cord degeneration in a case of “recovered” spinal cord decompression sickness.Br. Med. J. 283, 888.

    Article  CAS  Google Scholar 

  • Palmer A. C., Calder I. M., and Hughes J. T. (1987) Spinal cord degeneration in divers.Lancet 2, 1365–1366.

    Article  PubMed  CAS  Google Scholar 

  • Reul J., Weis J., Jung A., Willmes K., and Thron A. (1995) Central nervous system lesions and cervical disc herniations in amateur divers.Lancet 345, 1403–1405.

    Article  PubMed  CAS  Google Scholar 

  • Tabira T. and Kira J.-I. (1992) Strain and species differences of encephalitogenic determinants of myelin basic protein and proteolipid apoprotein, inMyelin: Biology and Chemistry (Martenson R. E., ed.), CRC, Boca Rato, FL, pp. 783–799.

    Google Scholar 

  • Toews A. D., Horrocks L. A., and King J. S. (1976) Simultaneous isolation of purified microsomal and myelin fractions from rat spinal cord.J. Neurochem. 27, 25–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, J.P., Kirschner, D.A. Spinal cord myelin is vulnerable to decompression. Molecular and Chemical Neuropathology 30, 273–288 (1997). https://doi.org/10.1007/BF02815103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815103

Index Entries

Navigation