Skip to main content
Log in

Digital fruit ripening: Data mining in the TIGR tomato gene index

  • Commentary
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Many sequences of genes now are contained in databases available to the public. These databases will be the foundation and starting points of research in the future. Extracting information from these databases is useful to all forms of genetic, biochemical, and molecular biological research. We are interested in improving the nutrition of the tomato (Lycopersicon esculentum) through an understanding of the fundamentals of the molecular biological and biochemical processes that occur during tomato fruit development. The TIGR Tomato Gene Index has been of much use to our laboratory in determining new areas of molecular analysis for this research. We have examined this database for genes involved in ripening by using the nucleic acid and protein sequence searching software, BLAST, and by comparing gene expression information contained within the database. In this article, we report a number of previously unobserved genes that possibly are involved in tomato fruit development. Transcripts for MADS Box genes, zinc-finger genes, homeobox genes, and polycomb genes are among the transcripts that reveal upregulation during tomato fruit ripening. We believe that the information contained in this article will be valuable in considering approaches to analyzing the developmental processes involved in tomato fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EST:

expressed sequence tags

RT-PCR:

reverse transcription-polymerase chain reaction

TC:

tentative consensus sequence

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla L, and Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97: 5328–5333.

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Bartley GE and Scolnik PA (1993) cDNA cloning, expression during development, and genome mapping ofPSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268: 25718–25721.

    PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA, and Beyer P (1999) TwoArabidopsis thaliana carotene desturases, phytoene desaturase and zeta-carotene desaturase, expressed inEscherichia coli, catalyze a polycis pathway to yield pro-lycopene. Eu J Biochem 259: 396–403.

    Article  CAS  Google Scholar 

  • Bewley DJ, Hempel FD, McCormick S, and Zambryski P (2000) Reproductive development. In: Buchanan BB, Gruissem W and Jones RL (eds), Biochemistry & Molecular Biology of Plants, pp. 988–1043. American Society of Plant Physiologists, Rockville, MD, USA.

    Google Scholar 

  • Bowman JL and Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc-finger and helix-loop-helix domains. Development 126: 2387–2396.

    PubMed  CAS  Google Scholar 

  • Campbell M, Hahn FM, Poulter CD, and Leustek T (1998) Analysis of the isopentenyl diphosphate isomerase gene family fromArabidopsis thaliana. Plant Mol Biol 36: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Campos N, Rodriguez-Concepcion M, Seemann M, Rohmer M, and Boronat A (2001) Identification ofgcpE as a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis inEscherichia coli. FEBS Lett 488: 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Carballo E, Lai WS, and Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  • Chan RL, Gago GM, Palena CM, and Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta 1442: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX Jr, Lafond TP, and Gantt E (2000) Evidence of a role forLytB in the nonmevalonate pathway of isoprenoid biosynthesis. J Bacteriol 182: 5841–5858.

    Article  PubMed  CAS  Google Scholar 

  • Dogbo O, Laferriere A, D’Harlingue A, and Camara B (1988) Carotenoid biosynthesis: isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA 85: 7054–7058.

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, and Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6: 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, and Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Ewing RM, Kahla AB, Poirot O, Lopez F, Audic S, and Claverie JM (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9: 950–959.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular Biology of Fruit Maturation and Ripening. Annu Rev Plant Physiol Plant Mol Biol 52: 725–749.

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Bartley GE, and Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5: 379–387.

    PubMed  CAS  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, and Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, and Gagliano WB (1998) Maternal control of embryogenesis byMEDEA, a polycomb group gene in Arabidopsis. Science 280: 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, and Hirschberg J (2002) Cloning oftangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Ishida BK (1999) Activated lycopene biosynthesis in tomato fruitin vitro. Acta Horticulturae 487: 445–452.

    CAS  Google Scholar 

  • Ishida BK, Jenkins SM, and Say B (1998) Induction ofAGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro. Plant Mol Biol 36: 733–739.

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Williams A, Chen JJ, Mathern J, Hake S, and Sinha N (1998) Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Mol Biol 36: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Schughart K, and Ruddle FH (1993) Early evolutionary origin of major homeodomain sequence classes. Genomics 18: 54–70.

    Article  PubMed  CAS  Google Scholar 

  • Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, and Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell 63: 579–590.

    Article  PubMed  CAS  Google Scholar 

  • Kuntz M, Romer S, Suire C, Hugueney P, Weil JH, Schantz R, and Camara B (1992) Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J 2: 25–34.

    PubMed  CAS  Google Scholar 

  • Li J, Jia D, and Chen X (2001) Hual, a regulator of stamen and carpel identities inArabidopsis, codes for a nuclear RNA binding protein, Plant Cell 13: 2269–2281.

    PubMed  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, and Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase, Plant J 22: 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Lozano R, Angosto T, Gomez P, Payan C, Capel J, Huijser P, Salinas J., and Martinez-Zapater JM (1998) Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes. Plant Physiol 117: 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Martin C and Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Meissner R and Michael AJ (1997) Isolation and characterisation of a diverse family ofArabidopsis two and three-fingered C2H2 zinc-finger protein genes and cDNAs. Plant Mol Biol 33: 615–624.

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, and Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments inArabidopsis. Plant Physiol 122: 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, and Jofuku KD (1997) The AP2 domain ofAPETALA2 defines a large new family of DNA binding proteins inArabidopsis. Proc Natl Acad Sci USA 94: 7076–7081.

    Article  PubMed  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, and Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Pecker I, Chamovitz D, Linden H, Sandmann G, and Hirschberg J (1992) A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc Natl Acad Sci USA 89: 4962–4966.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, and Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and similarity to homeotic genes fromAntirrhinum andArabidopsis. Plant J 1: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, and Lifschitz E (1994) Isolation of the tomatoAGAMOUS geneTAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–173.

    PubMed  CAS  Google Scholar 

  • Qian YQ, Billeter M, Otting G, Muller M, Gehring WJ, and Wuthrich K (1989) The structure of theAntennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59: 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J, Liang F, Holt I, Pertea G, and Upton J (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N, and Boronat A (2001) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J 27: 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, and Bacher A (2000a) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-Derythritol synthase ofArabidopsis thaliana. Proc Natl Acad Sci USA 97: 6451–6456.

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Luttgen H, Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH, and Bacher A (2000b) Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from tomato. Proc Natl Acad Sci USA 97: 8251–8256.

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Kis K, Bacher A, and Eisenreich W (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5: 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt AO, Specht T, Beckmann G, Dahl E, Pilarsky CP, Hinzmann B, and Rosenthal A (1999) Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucleic Acids Res 27: 4251–4260.

    Article  PubMed  CAS  Google Scholar 

  • Scolnik PA and Bartley GE (1996) A Table of Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis. Plant Mol Biol Rep 14: 305–319.

    Article  CAS  Google Scholar 

  • Sieburth LE, Running MP, and Meyerowitz EM (1995) Genetic separation of third and fourth whorl functions ofAGAMOUS. Plant Cell 7: 1249–1258.

    PubMed  CAS  Google Scholar 

  • Sitzmann J, Noben-Trauth K, and Klempnauer KH (1995) Expression of mouse c-myb during embryonic development. Oncogene 11: 2273–2279.

    PubMed  CAS  Google Scholar 

  • Slater A, Maunders MJ, Edwards K, Schuch W, and Grierson D (1985) Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5: 137–147.

    Article  CAS  Google Scholar 

  • Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54: 582–596.

    Article  PubMed  CAS  Google Scholar 

  • Tenenhaus C, Subramaniam K, Dunn MA, and Seydoux G (2001) PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line ofCaenorhabditis elegans. Genes Dev 15: 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  • Tornero P, Conejero V, and Vera P (1996) Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development. Plant J 9: 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, and Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway inCatharanthus roseus. Biochim Biophys Acta 1517: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, and Hake S (1991) The developmental geneKnotted-1 is a member of a maize homeobox gene family. Nature 350: 241–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartley, G.E., Ishida, B.K. Digital fruit ripening: Data mining in the TIGR tomato gene index. Plant Mol Biol Rep 20, 115–130 (2002). https://doi.org/10.1007/BF02799427

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02799427

Key words

Navigation