Skip to main content
Log in

Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To clarify the mineral status in selenium (Se)-deficient rats fed a vitamin-free casein (VFC)-based or torula yeast (TY)-based diet, 24 weanling male Wistar rats were divided into 4 groups fed diets using VFC or TY as the protein source and containing Se at sufficient (0.5 μg/g,+Se) or deficient (0.019 μg/g for VFC-based and <0.005 μg/g for TY-based diets,Se) level for 8 wk. TY supplied a larger amount of extra minerals (Na, K, Ca, Mg, Fe, Mn, Zn, and Cu) except Se than VFC. Se concentration and glutathione peroxidase activity were significantly lower in TY-fed rats than in VFC-fed rats, as well as inSe rats compared to+Se rats. Compared to+Se rats, Fe concentration was higher in liver and muscle ofSe rats fed the VFC-based diet and in plasma, heart, liver, and tibia ofSe rats fed the TY-based diet. Compared to+Se rats, decreases of Mn concentration appeared in plasma, heart, and tibia of VFC-fedSe rats and in brain, heart, liver and tibia of TY-fedSe rats. There was also a little imbalance in Ca, Mg, Na, K, and Cu caused by Se deficiency. The results indicated that Se deficiency induced the mineral imbalance in rats, especially an increase in Fe and decrease in Mn, which was more severe in TY-fed rats than VFC-fed rats. However, TY cannot be used as a model for both Se and other mineral deficiency because of the extra minerals except Se found in TY. Instead, VFC can be employed, which contains fewer minerals except Se than TY and also can produce a severe degree of Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, G. Yang, J. Chen, X. Chen, Z. Wen, and K. Ge.Biol. Trace Elem. Res. 2, 91 (1980).

    CAS  Google Scholar 

  2. A. Peng and C. L. Yang,Biol. Trace Elem. Res. 28, 1 (1991).

    PubMed  CAS  Google Scholar 

  3. E. Delilbasi, B. Turan, E. Yucel, R. Sasmaz, A. Isimer, and A. Sayal.Biol. Trace Elem. Res. 28, 21 (1991).

    PubMed  CAS  Google Scholar 

  4. S. Yu, Y. Zhu, W. Li, Q. Huang, Z. Chang, Q. Zhang, and C. Hou.Biol. Trace Elem. Res. 29, 289 (1991).

    PubMed  CAS  Google Scholar 

  5. R. F. Burk.Methods in Enzymology 143, 307 (1987).

    PubMed  CAS  Google Scholar 

  6. American Institute of Nutrition.J. Nutr. 107, 1340 (1977).

    Google Scholar 

  7. american Institute of Nutrition.J. Nutr. 110, 1726 (1980).

    Google Scholar 

  8. R. A. Lawrence and R. F. Burk.Biochem. Biophys. Res. Commun. 71, 952 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  10. J. Sekine, M. Kimura, and Y. Itokawa,Jpn. J. Hyg. 39, 807 (1984).

    CAS  Google Scholar 

  11. W. G. Hoekstra.Erythrocyte Structure and Function, vol. 1, G. J. Brewer, ed. Liss, New York, 1975, pp. 667–681.

    Google Scholar 

  12. R. C. Siddons and C. F. Mills,British J. Nutr. 46, 345 (1981).

    Article  CAS  Google Scholar 

  13. T. Suzuki, C. H. Kim, and K. Yasumoto,J. Nutr. Science Vitaminol. (Tokyo, Japan)34, 491 (1988).

    CAS  Google Scholar 

  14. N. Chareonpong and K. Yasumoto, Proceedings of The Eighth Symposium on Trace Nutrients Research (Kyoto, Japan)8, 61 (1991).

    Google Scholar 

  15. G. Sandri, E. Panfili, and L. Ernster,Biochim. Biophys. Acta 1035, 300 (1990).

    PubMed  CAS  Google Scholar 

  16. R. E. Burch, R. V. Williams, H. K. Hahn, M. M. Jetton, and J. F. Sullivan,J. Lab. Clin. Med. 86, 132 (1975).

    PubMed  CAS  Google Scholar 

  17. A. B. R. Thomson, D. Olatunbosun, and L. S. Valberg,J. Lab. Clin. Med. 78, 642 (1971).

    PubMed  CAS  Google Scholar 

  18. K. Yokoi, M. Kimura and Y. Itokawa,Biol. Trace Elem. Res. 29, 257 (1991).

    PubMed  CAS  Google Scholar 

  19. S. Zidenberg-Cherr and C. L. Keen, Nutritional Biovailability of Manganese (Kies, C., ed.), American Chemical Society, Washington, DC, 1987, pp. 56–66.

    Google Scholar 

  20. L. L. Ji, F. W. Stratman, and H. A. Lardy,Archives of Biochemistry and Biophysics 263, 150 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. E. Nakano, K. Takeshige, Y. Toshima, K. Tokunaga, and S. Minakami,Cardiovascular Research 23, 498 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. J. R. Prohaska,Physiol. Rev. 67, 858 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Kimura, M. & Itokawa, Y. Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet. Biol Trace Elem Res 37, 219–231 (1993). https://doi.org/10.1007/BF02783797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783797

Index Entries

Navigation