Skip to main content
Log in

Effect of hydrogen in aluminium and aluminium alloys: A review

  • Proceedings Of The Workshop On ‘Hydrogen In Materials’, New Delhi, 1994
  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between hydrogen embrittlement and stress corrosion cracking are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht J, Bernstein I M and Thompson A W 1982Met. Trans. A13 811

    Google Scholar 

  • Balasubramanian R and Duquette D J 1989 inProc. of fifth int. aluminium-lithium conf., Williamsburg, Virginia, (eds) T H Sanders Jr and E A Starke Jr, Vol. III, p. 1271

  • Bandyopadhyay A, Ambat R and Dwarakadasa E S 1992Bull. Mater. Sci. 15 311

    CAS  Google Scholar 

  • Bandyopadhyay A, Ambat R and Dwarakadasa E S 1994 inMetallic corrosion principles and control, (eds) A S Khanna, S N Malhotra, K S V Santhanam and M K Totlani (New Delhi: Wiley Eastern Limited) p. 13

    Google Scholar 

  • Besenbacher F, Myers S M and Norskov J K cited by Ishikawa T and McLellan R B 1986Acta Metall. 34 1093

    Google Scholar 

  • Brenner P 1962Aluminium 38 43

    Google Scholar 

  • Choo W Y and Bernstein I M 1984Met. Trans. A15 1953

    Google Scholar 

  • Christodoulou L and Flower H M 1980Acta Metall. 28 481

    Article  CAS  Google Scholar 

  • Csanady A, Papp K and Pasztor E 1981Mater. Sci. & Eng. 48 35

    Article  CAS  Google Scholar 

  • Dix E H Jr 1940Trans. AIME 137 11

    Google Scholar 

  • Doig P and Flewitt P E J 1977Proc. R. Soc. London A357 439

    Google Scholar 

  • Doig P and Flewitt P E J 1981Met. Trans. A12 923

    Google Scholar 

  • Edwards R A H and Eichenauer W 1980Scr. Metall. 14 971

    Article  CAS  Google Scholar 

  • Eichenauer W, Hattenbach K and Pebler A 1961Zeit. Metall. 52 682

    CAS  Google Scholar 

  • Eichenauer W and Pebler A 1957Z. Metall. 48 375

    Google Scholar 

  • Feuerstein S and John I W 1969J. Appl. Phys. 40 3334

    Article  CAS  Google Scholar 

  • Foster L M, Jack T H and Hill W W 1970Met. Trans. A1 3117

    Google Scholar 

  • Gest R J and Troiano A R 1972 inL. Hydrogene dans Les Metaux (Paris: Edition Science et Industrie) p. 427

    Google Scholar 

  • Gest R J and Troiano A R 1974Corrosion 30 274

    CAS  Google Scholar 

  • Green J A S, Hayden H W and Montague W G 1976 inEffect of hydrogen on behaviour of materials, (New York: AIME) p. 200

    Google Scholar 

  • Hardwick D A, Taberi M, Thompson A W and Bernstein I M 1982Met Trans. A13 235

    Google Scholar 

  • Hardwick D A, Thompson A W and Bernstein I M 1983Met Trans. A14 2517

    Google Scholar 

  • Hashimoto E and Kino T 1983J. Phys. F. Met. Phy. 13 1157

    Article  CAS  Google Scholar 

  • Ichimura M, Imabayashi M and Hayakawa M 1980J. Jap. Inst. Met. 44 1053

    Google Scholar 

  • Ishikawa T and McLellan R B 1986Acta Metall. 34 1091

    Article  CAS  Google Scholar 

  • Kruger J 1980 inStress corrosion cracking (eds) J Yahalom and A Aladjem (Israel: Freund Publishing House) p. 4

    Google Scholar 

  • Latanision R M, Gastine O H and Compeau C R 1979 inEnvironment sensitive fracture of engineering materials (New York: AIME) p. 48

    Google Scholar 

  • Latanision R M and Staehle R W 1968Scr. Metall. 2 667

    Article  CAS  Google Scholar 

  • Leger M and Piercy G R 1981Philos. Mag. 43 377

    CAS  Google Scholar 

  • Matsuo S and Hirata T 1967J. Jap. Inst. Met. 31 590

    CAS  Google Scholar 

  • Mueller M P, Bernstein I M and Thompson A W 1985Corrosion 41 127

    CAS  Google Scholar 

  • Ohnishi T 1987Bull. Jap. Inst. Met. 26 389

    CAS  Google Scholar 

  • Opie W R and Grant N J 1950188 1237

  • Oriani R A 1972Ber. Bunsen Gesell. f. Phys. Chemic. 76 848

    CAS  Google Scholar 

  • Oriani R A 1978A decohesion theory of hydrogen induced crack propagation in stress corrosion and hydrogen embrittlement of iron base alloys (Houston, TX: NACE)

    Google Scholar 

  • Oriani R A and Josephic P H 1972Scr. Metall. 6 681

    Article  CAS  Google Scholar 

  • Oriani R A and Josephic P H 1974Acta Metall. 22 1065

    Article  CAS  Google Scholar 

  • Outlaw R A, Peterson D T and Schmidt F A 1982Scr. Metall. 16 277

    Article  Google Scholar 

  • Papp K and Kovacs-Cseteny E 1977Scr. Metall. 11 921

    Article  CAS  Google Scholar 

  • Papp K and Kovacs-Cseteny E 1981Scr. Metall. 15 161

    Article  CAS  Google Scholar 

  • Pathania R S and Tromans D 1981Met. Trans. A12 607

    Google Scholar 

  • Peisl H 1978Topics in applied physics: Hydrogen in metals I, (eds) G Alefeld and J Vokl (Berlin: Springer-verlag) p. 53

    Google Scholar 

  • Ransley C E and Neufeld H 1948J. Inst. Met. 74 599

    CAS  Google Scholar 

  • Sander W and Meissner K L 1923Z. Metall. 15 180,16 12

    CAS  Google Scholar 

  • Scamans G M 1978J. Mater. Sci. 13 27

    Article  CAS  Google Scholar 

  • Scamans G M, Alani R and Swann P R 1976Corrosion Sci. 16 443

    Article  CAS  Google Scholar 

  • Shahani H 1985Scand. J. Met. 14 306

    CAS  Google Scholar 

  • Shin K S, Kim S S and Lee E W 1989 inProc. of fifth int. aluminium-lithium conf., Williamsburg, Virginia, (eds) T H Sanders Jr and E A Starke Jr (Materials and Component engg. Publications Ltd.) Vol. III, p 1319

  • Speidel M O 1971 inThe theory of stress corrosion cracking in alloys (Brussels: Natio Scientific Affairs Division) p. 289

    Google Scholar 

  • Speidel M O 1974 inHydrogen in metals (eds) I M Bernstein and A W Thompson (Metals Park, Ohio: American Society for Metals) p. 249

    Google Scholar 

  • Speidel M O 1975Met. Trans. A6 631

    Google Scholar 

  • Speidel M O and Hyatt M V 1972 inAdvances in corrosion science and technology (New York-London: Plenum Press) Vol. 2, p. 115

    Google Scholar 

  • Speidel M O 1984 inHydrogen embrittlement and stress corrosion cracking (eds) R Gibala and R F Hehemann (Metals Park, Ohio: Am. Soc. for Metals) p. 271

    Google Scholar 

  • Talbot D E J 1975Int. Mater. Rev. 20 166

    CAS  Google Scholar 

  • Thompson A W 1979 inEnvironment-sensitive fracture of engineering materials, (ed) Z A Foroulis (Warrendale, Pennsylvania: The Metallurgical Society of AIME) p. 379

    Google Scholar 

  • Thompson A W and Bernstein I M 1980Adv. Corrosion Sci. & Technol. 7 53

    CAS  Google Scholar 

  • Tiwari S N, Gupta A K and Malhotra S L 1986The Brit. Found. 129

  • Troiano A R 1960Trans. ASM 52 54

    Google Scholar 

  • Tuck C D S 1985Met. Trans. A16 1503

    Google Scholar 

  • Watson J W and Meshii M 1989 inTreatise of materials science and technology, p. 501

  • Watson J W, Shen Y Z and Meshii M 1988Met. Trans. A19 2299

    Google Scholar 

  • Wu-Yang Chu, Chi-Mei Hsiao and Jun-wen Wang 1985Met. Trans. A16 1663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambat, R., Dwarakadasa, E.S. Effect of hydrogen in aluminium and aluminium alloys: A review. Bull. Mater. Sci. 19, 103–114 (1996). https://doi.org/10.1007/BF02744792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744792

Keywords

Navigation