Skip to main content
Log in

Orogeny, migmatites and leucogranites: A review

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The type ofP-T-t path and availability of fluid (H2O-rich metamorphic volatile phase or melt) are important variables in metamorphism. Collisional orogens are characterized by clockwiseP-T evolution, which means that in the core, where temperatures exceed the wet solidus for common crustal rocks, melt may be present throughout a significant portion of the evolution. Field observations of eroded orogens show that lower crust is migmatitic, and geophysical observations have been interpreted to suggest the presence of melt in active orogens. A consequence of these results is that orogenic collapse in mature orogens may be controlled by a partially-molten layer that decouples weak crust from subducting lithosphere, and such a weak layer may enable exhumation of deeply buried crust. Migmatites provide a record of melt segregation in partially molten crustal materials and syn-anatectic deformation under natural conditions. Grain boundary flow and intra-and inter-grain fracture flow are the principal grain scale melt flow mechanisms. Field observations of migmatites in ancient orogens show that leucosomes occur oriented in the metamorphic fabrics or are located in dilational sites. These observations are interpreted to suggest that melt segregation and extraction are syntectonic processes, and that melt migration pathways commonly relate to rock fabrics and structures. Thus, leucosomes in depleted migmatites record the remnant permeability network, but evolution of permeability networks and amplification of anomalies are poorly understood. Deformation of partially molten rocks is accommodated by melt-enhanced granular flow, and volumetric strain is accommodated by melt loss. Melt segregation and extraction may be cyclic or continuous, depending on the level of applied differential stress and rate of melt pressure buildup. During clockwiseP-T evolution, H2O is transferred from protolith to melt as rocks cross dehydration melting reactions, and H2O may be evolved above the solidus at lowP by crossing supra-solidus decompression-dehydration reactions if micas are still present in the depleted protolith. H2O dissolved in melt is transported through the crust to be exsolved on crystallization. This recycled H2O may promote wet melting at supra-solidus conditions and retrogression at subsolidus conditions. The common growth of ‘late’ muscovite over sillimanite in migmatite may be the result of this process, and influx of exogenous H2O may not be necessary. However, in general, metasomatism in the evolution of the crust remains a contentious issue. Processes in the lower-most crust may be inferred from studies of xenolith suites brought to the surface in lavas. Based on geochemical data, we can use statistical methods and modeling to evaluate whether migmatites are sources or feeder zones for granites, or simply segregated melt that was stagnant in residue, and to compare xenoliths of inferred lower crust with exposed deep crust. Upper-crustal granites are a necessary complement to melt-depleted granulites common in the lower crust, but the role of mafic magma in crustal melting remains uncertain. Plutons occur at various depths above and below the brittle-to-viscous transition in the crust and have a variety of 3-D shapes that may vary systematically with depth. The switch from ascent to emplacement may be caused by amplification of instabilities within (permeability, magma flow rate) or surrounding (strength or state of stress) the ascent column, or by the ascending magma intersecting some discontinuity in the crust that enables horizontal magma emplacement followed by thickening during pluton inflation. Feedback relations between rates of pluton filling, magma ascent and melt extraction maintain compatibility among these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsdorf D and Nelson D 1999 Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?;Geology,27 943–946

    Article  Google Scholar 

  • Alsdorf D and 5 others, 1998 Crustal deformation of the Lhasa Terrane, Tibet Plateau from Project INDEPTH Deep Seismic Reflection Profiles;Tectonics,17 501–519

    Article  Google Scholar 

  • Ashworth J R (ed) 1985 Migmatites. Glasgow: Blackie.

    Google Scholar 

  • Ashworth J R and Brown M 1990 High-temperature Metamorphism and Crustal Anatexis.The Mineralogical Society Series:2 London: Unwin Hyman.

    Google Scholar 

  • Atherton M P and Tarney J 1979Origin of granite batholiths. (Shiva Publishing Ltd.)

  • Baldwin S L, Lister G S, Hill E J, Foster D A and McDougall I 1993 Thermochronologic constraints on the tectonic evolution of active metamorphic core complexes, D’Entrecasteaux Islands, Papua New Guinea;Tectonics,12 611–628

    Google Scholar 

  • Barboza S A, Bergantz G W and Brown M 1999 Regional granulite facies metamorphism in the Ivrea zone: Is the Mafic Complex the smoking gun or a red herring?Geology,27 447–450

    Article  Google Scholar 

  • Barr T D and Dahlen F A 1989 Brittle frictional mountain building 2. Thermal structure and heat budget;J. Geophys. Res.,94 3923–3947

    Google Scholar 

  • Barton M D and Hanson R B 1989 Magmatism and development of low pressure metamorphic belts—implications from the western-United States and thermal modeling;Geol. Soc. Am. Bull.,101 1051–1065

    Article  Google Scholar 

  • Benn K, Odonne F and de Saint Blanquat M 1998 Pluton emplacement during transpression in brittle crust: new views from analogue experiments;Geology,26 1079–1082

    Article  Google Scholar 

  • Blumenfeld P and Bouchez J L 1988 Shear criteria in granite and migmatite deformed in the magmatic and solid states;J. Struct. Geol.,10 361–372

    Article  Google Scholar 

  • Braun I and Kriegsman L M 2001 Partial melting in crustal xenoliths and anatectic migmatites: a comparison;Phys. Chem. of the Earth, (A) 26 261–266

    Article  Google Scholar 

  • Brown M 1973 The Definition of Metatexis, Diatexis and Migmatite;Proc. Geol. Assoc. 84 371–382

    Google Scholar 

  • Brown M 1978 The tectonic evolution of the Precambrian rocks of the St. Malo region, Armorican Massif, France;Precambrian Res. 6 1–21

    Article  Google Scholar 

  • Brown M 1993P-T-t evolution of orogenic belts and the causes of regional metamorphism;J. Geol. Soc., London 150 227–241

    Google Scholar 

  • Brown M 1994 The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens;Earth-Sci. Rev. 36 83–130

    Article  Google Scholar 

  • Brown M 1997 Migmatites and Melt Migration. In:Precambrian Geology and Metamorphic Petrology, (eds.) Q Xianglin, Y Zhendong, and H C Hall. Proceedings of the 30th International Geological Congress, VSP, Zeist, The Netherlands, pp. 187–202

    Google Scholar 

  • Brown M 1998 Unpairing metamorphic belts: P-T paths and a tectonic model for the Ryoke Belt, southwest Japan;J. metamorphic Geol.,16 3–22

    Article  Google Scholar 

  • Brown M 2001 From microscope to mountain belt. 150 years of petrology and its contribution to understanding the tectonics of orogens;J. Geodynamics,32 115–164

    Article  Google Scholar 

  • Brown M and Dallmeyer R D 1996 Rapid Variscan exhumation and role of magma in core complex formation: Southern Brittany metamorphic belt, France;J. metamorphic Geol.,14 361–379

    Article  Google Scholar 

  • Brown M and D’Lemos R S 1991 The Cadomian granites of Mancellia, north-east Armorican Massif of France: relationship to the St. Malo migmatite belt, petrogenesis and tectonic setting.Precambrian Research,51 393–427

    Article  Google Scholar 

  • Brown M and O’Brien P J 1997 Evolution of Metamorphic Belts: A Changing View. In:Precambrian Geology and Metamorphic Petrology, (eds.) Q Xianglin Y Zhendong and H C Hall. Proceedings of the 30th International Geological Congress, VSP, Zeist, The Netherlands, pp. 217–231

    Google Scholar 

  • Brown M and Pressley R A 1999 Crustal melting in nature: Prosecuting source processes;Phys. Chem. of the Earth, (A) 24 305–316

    Article  Google Scholar 

  • Brown M and Raith M 1996 First evidence of ultra hightemperature decompression from the granulite province of Southern India;J. Geol. Soc., London 153 819–822

    Google Scholar 

  • Brown M and Rushmer T 1997 The role of deformation in the movement of granite melt: views from the laboratory and the field. In:Deformation-enhanced Fluid Transport in the Earth’s Crust and Mantle (ed.) M B Holness. The Mineralogical Society Series8 Chapman and Hall, London, pp. 111–144

    Google Scholar 

  • Brown M and Solar G S 1998a Shear zone systems and melts: Feedback relations and self-organization in orogenic belts;J. Struct. Geol.,20 211–227

    Article  Google Scholar 

  • Brown M and Solar G S 1998b Granite ascent and emplacement during contractional deformation in convergent orogens;J. Struct. Geol.,20 1365–1393

    Article  Google Scholar 

  • Brown M and Solar G S 1999 The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm;Tectonophysics,312 1–33

    Article  Google Scholar 

  • Brown M, Friend C R L, McGregor V R and Perkins W T 1981 The late-Archaean QÔrqut granite complex of southern West Greenland;J. Geophys. Res.,86 10,617–10,632

    Google Scholar 

  • Brown M, Rushmer T and Sawyer E W 1995a Introduction to Special Section: Mechanisms and consequences of melt segregation from crustal protoliths;J. Geophys. Res.,100 15,551–15,563

    Google Scholar 

  • Brown M, Averkin Y, McLellan E and Sawyer E 1995b. Melt segregation in migmatites;J. Geophys. Res.,100 15,655–15,679

    Google Scholar 

  • Brown M A, Brown M, Carlson W D and Denison C 1999 Topology of syntectonic melt flow networks in the deep crust: inferences from three-dimensional images of leucosome geometry in migmatites;Amer. Mineral.,84 1793–1818

    Google Scholar 

  • Brun J P and Cobbold P R 1980 Strain heating and thermal softening in continental shear zones: a review;J. Struct. Geol.,2 149–158

    Article  Google Scholar 

  • Brun J P, Gapaas D, Cogne J P, Ledru P and Vigneresse J L 1990 The Flamanville granite (northwest France)—an unequivocal example of a syntectonically expanding pluton;Geol. J.,25 271–286

    Article  Google Scholar 

  • Burg J P, Van Dendriessche J and Brun J P 1994 Syn-to post-thickening extension in the Variscan Belt of western Europe: Mode and structural consequences;Geol. de la France,3 33–51

    Google Scholar 

  • Burnham C W 1979 Magmas and hydrothermal fluids. In: (ed.)Geochemistry of Hydrothermal Ore Deposits, 2nd Edition, H L Barnes, New York: Wylie-Interscience, pp. 71–136

    Google Scholar 

  • Carson C J, Powell R, Wilson C J L and Dirks P H H M 1997 Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica;J. metamorphic Geol.,15 105–126

    Article  Google Scholar 

  • Castro A, Corretga L G, El-Biad M, El-Hmidi H, Fernandez C and Patino Douce A E 2000 Experimental constraints on Hercynian anatexis in the Iberian Massif, Spain.J. Petrol.,41 1471–1488

    Google Scholar 

  • Cesare B, Salvioli Mariani E and Venturelli G 1997. Crustal anatexis and melt segregation in the restitic xenoliths of El Hoyazo (SE Spain).Min. Mag.,61 15–27

    Article  Google Scholar 

  • Chamberlain C P and Sonder L J 1990 Heat-producing elements and the thermal and basic patterns of metamorphic belts;Science,250 763–769

    Article  Google Scholar 

  • Clemens J D 1998 Observations on the orogens and ascent mechanisms of granitic magmas;J. Geol. Soc., London,155 843–851

    Google Scholar 

  • Clemens J D and Mawer C K 1992 Granitic magma transport by fracture propagation;Tectonophysics,204 339–360

    Article  Google Scholar 

  • Clemens J D and Watkins J M 2001 The fluid regime of hightemperature metamorphism during granitoid magma genesis;Contrib. Mineral. Petrol.,140 600–606

    Google Scholar 

  • Collins W J and Sawyer E W 1996 Pervasive magma transfer through the lower-middle crust during non-coaxial compressional deformation: An alternative to diking;J. metamorphic Geol.,14 565–579

    Article  Google Scholar 

  • Connolly J A D, Holness M B, Rushmer T and Rubie D C 1997 Reaction-induced microcracking: An experimental investigation of a mechanism for enhancing anatectic melt extraction;Geology,25

  • Connolly P and Cosgrove J 1999 Prediction of fractureinduced permeability and fluid flow in the crust using experimental stress data.AAPG Bull.,83 757–777

    Google Scholar 

  • Cruden A R 1998 On the emplacement of tabular granites;J. Geol. Soc. London,155 853–862

    Google Scholar 

  • Cruden A R and McCaffrey K J W 2001 Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms;Phys. Chem. of the Earth,26 303–315

    Article  Google Scholar 

  • Cuney M and Barbey P 1982 Mise en evidence de phenomanes de cristallisation fractionnée dans les migmatites.C.R. Acad. Sc. Paris,295 37–42

    Google Scholar 

  • Dallain C, Schulmann K and Ledru P 1999 Textural evolution in the transition from subsolidus annealing to melting process, Velay Dome, French Massif Central;J. metamorphic Geol.,17 61–74

    Article  Google Scholar 

  • Davidson C, Schmid S M and Hollister L S 1994 Role of melt during deformation in the deep crust;TERRA Nova,6 133–142

    Article  Google Scholar 

  • Davis G R and Tommasini S 2000 Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes;Chem. Geol.,162 169–191

    Article  Google Scholar 

  • Davis J H and von Blanckenburg F 1995 Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens;Earth Planet. Sci. Lett.,129 85–102

    Article  Google Scholar 

  • Del Moro A, Martin S and Prosser G 1999 Migmatites of the Ulten Zone (NE Italy), A record of melt transfer in deep crust;J. Petrol.,40 1803–1826

    Article  Google Scholar 

  • Deniel C, Vidal P, Fernandez A, LeFort P and Peucat J J 1987 Isotopic study of the Manaslu Granite (Himalaya, Nepal)—inferences on the age and source of Himalayan leucogranites;Contrib. Mineral. Petrol.,96 78–92

    Article  Google Scholar 

  • Dewey J F 1988 Extensional collapse of orogens;Tectonics,7 1123–1139

    Google Scholar 

  • DeYoreo J J, Lux D R, Guidotti C V, Decker E R and Osberg P H 1989 The Acadian thermal history of western Maine;J. metamorphic Geol.,7 169–190

    Article  Google Scholar 

  • DeYoreo J J, Lux D R and Guidotti C V 1991 Thermal modelling in low-pressure/high-temperature metamorphic belts;Tectonophysics,188 209–238

    Article  Google Scholar 

  • Dougan T W 1979 Compositional and modal relationships and melting relationships in some migmatitic metapelites from New Hampshire and Maine;Amer. J. Sci.,279 897–935

    Article  Google Scholar 

  • Dougan T W 1981 Melting reactions and trace element relationships in selected specimens of migmatitic pelites from New Hampshire and Maine;Contrib. Mineral. Petrol.,78 337–344

    Article  Google Scholar 

  • Ellis S and Beaumont C 1999 Models of convergent boundary tectonics: Implications for the interpretation of Lithoprobe data;Can. J. Earth Sci.,36 1711–1741

    Article  Google Scholar 

  • Ellis D J and Obata M 1992 Migmatite and melt segregation at Cooma, New South Wales;Trans. R. Soc., Edinburgh, Earth Sci.,83 95–106

    Google Scholar 

  • Fleitout L and Froidevaux C 1980 Thermal and mechanical evolution of shear zones;J. Struct. Geol.,2 159–164

    Article  Google Scholar 

  • Fleming P D and White A J R 1984 Relationships between deformation and partial melting in the Palmer migmatites;Austral. J. Earth Sci.,31 351–360

    Article  Google Scholar 

  • Franz L and Harlov D E 1998 High-grade K-feldspar veining in granulites from the Ivrea-Verbano zone, northern Italy: Fluid flow in the lower crust and implications for granulite facies genesis;J. Geol.,106 455–472

    Article  Google Scholar 

  • Gerdes A, Worner G and Henk A 2000 Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith;J. Geol. Soc., London,157 577–587

    Article  Google Scholar 

  • Grocott J, Brown M, Dallmeyer R D, Taylor G K and Treloar P J 1994 Mechanisms of continental growth in extensional arcs: An example from the Andean plate boundary zone;Geology,22 391–394

    Article  Google Scholar 

  • Hammouda T, Pichavant M and Chaussidon M 1996 Isotopic equilibration during partial melting: an experimental test of the behavior of Sr.Earth and Planet Sci. Let.,144 109–121

    Article  Google Scholar 

  • Handy M R 1989 Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grainsize and time;Tectonophysics,163 119–152

    Article  Google Scholar 

  • Handy M R, Franz L, Heller F, Janott B and Zurbriggen R 1999 Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland);Tectonics,18 1154–1177

    Article  Google Scholar 

  • Handy M R, Mulch A, Rosenau M and Rosenberg C L 2001 The role of fault zones and melts as agents of weakening, hardening and differentiation of the continental crust: a synthesis, In:The nature and tectonic significance of fault zone weakening (eds.) R E Holdsworth, J Magloughlin, R J Knipe, R A Strachan and R C Searle, Geol. Soc. Spec. Publ.,186 305–332

  • Harlov D E, Hansen E C and Bigler C 1998 Petrologic evidence for K-feldspar metasomatism in granulite facies rocks;Chem. Geol.,151 373–386

    Article  Google Scholar 

  • Harmon R S and Rapela C W 1992 Andean magmatism and its tectonic settingGeol. Soc. Amer., Spec. Paper,265 pp. 309

    Google Scholar 

  • Harris N, Vance D and Ayres M 2000 From sediment to granite: timescales of anatexis in the upper crust;Chem. Geol.,162 155–167

    Article  Google Scholar 

  • Harrison T M, Lovera O M and Grove M 1997 New insights into the origin of two contrasting Himalayan granite belts;Geology,25 899–902

    Article  Google Scholar 

  • Harrison T M, Grove M, Lovera O M and Katlos E J 1998 A model for the origin of Himalayan anatexis and inverted metamorphism;J. Geophys. Res.,103 27017–27032

    Article  Google Scholar 

  • Harte B, Pattison D R M and Linklater C M 1991 Field relations and petrography of partially melted pelitic and semi-pelitic rocks. In:Equilibrium and kinetics in contact metamorphism: The Ballachulish igneous complex and its aureole (eds.) G Voll, J Töpel, D R M Pattison and F Seifert. Springer-Verlag, Berlin and Heidelberg, pp. 82–210

    Google Scholar 

  • Hartel T H D and Pattison D R M 1996 Genesis of the Kapuskasing (Ontario) migmatitic mafic granulites by dehydration melting of amphibole: The importance of quartz to reaction progress;J. metamorphic Geol.,14 591–611

    Article  Google Scholar 

  • Haugerud R and Zen E-an 1991 An essay on metamorphic path studies or Cassandra inP-T-t space. (ed.) L L Perchuk.Progress in metamorphic and magmatic petrology, Cambridge, U K: Cambridge University Press, pp. 323–348

    Google Scholar 

  • Hodges K V 1998 The thermodynamics of Himalayan orogenesis;Geol. Soc. Spec. Publ.,138 7–22

    Google Scholar 

  • Hodges K V 2000 Tectonics of the Himilaya and southern Tibet from two perspectives;Geol. Soc. Amer. Bull.,112 324–350

    Article  Google Scholar 

  • Holk G J and Taylor H P Jr. 199718O/16O homogenization of the middle crust during anatexis: the Thor-Odin metamorphic core complex, British Columbia;Geology,25 31–24

    Article  Google Scholar 

  • Hollister L S 1993 The role of melt in the uplift and exhumation of orogenic belts;Chem. Geol.,108 31–48

    Article  Google Scholar 

  • Holness M B and Clemens J D 1999 Partial melting of the Appin Quartzite driven by fracture-controlled H2O infiltration in the aureole of the Ballachulish Igneous Complex, Scottish Highlands;Contrib. Mineral. Petrol.,136 154–168

    Article  Google Scholar 

  • Huang W L, Wyllie P J 1981 Phase relationship of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota;J. Geophys. Res.,86 1,015–1,029

    Google Scholar 

  • Huerta A D, Royden L H and Hodges K V 1998 The thermal structure of collisional orogens;J. Geophys. Res.,103 15,287–15,302

    Article  Google Scholar 

  • Hutton D H W 1988 Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies;Trans. R. Soc. Edinburgh: Earth Sci.,79 245–255

    Google Scholar 

  • Jamieson R A, Beaumont C, Fullsack P and Lee B 1998 Barrovian regional metamorphism: Where’s the heat? In:What drives metamorphism and metamorphic reactions (eds.) P J Treloar and P J O’Brien.Geol. Soc. Spec. Publ. 138 23–51

  • Jones K A and Brown M 1990 High-temperature ‘clockwise’ P-T paths and melting in the development of regional migmatites: an example from southern Brittany, France;J. metamorphic Geol.,8 551–578

    Article  Google Scholar 

  • Kay S M and Rapela C W 1990 Plutonism from Antarctica to Alaska;Geol. Soc. Amer., Spec. Paper,241 pp. 263

    Google Scholar 

  • Kays M A 1970 Mesozoic metamorphism, May Creek Schist Belt, Klamath Mountains, Oregon;Geol. Soc. Amer. Bull.,81 2743–2758

    Article  Google Scholar 

  • Kriegsman L M 2001a Partial melting, partial melt extraction and partial back reaction in anatectic migmatites;Lithos,56 75–96

    Article  Google Scholar 

  • Kriegsman L M 2001b Quantitative field methods for estimating melt production and melt loss;Phys. Chem. of the Earth.,26 247–253

    Article  Google Scholar 

  • Kriegsman L M and Hensen B J 1998 Back reactions between restite and melt: Implications for geothermobarometry and pressure-temperature paths;Geology,26 1111–1114

    Article  Google Scholar 

  • Laporte D, Rapaille C and Provost A 1997 Wetting angles, equilibrium melt geometry, and the permeability threshold of partially-molten crustal protoliths. In:Granites: From Segregation of Melt to Emplacement Fabrics (eds.) J L Bouchez, D H W Hutton and W E Stephens The Netherlands: Kluwer Academic Publishers, pp. 31–54

    Google Scholar 

  • Lathrop A S, Blum J D and Chamberlain C P 1996 Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire Plutonic Series;Contrib. Mineral. Petrol.,124 126–138

    Article  Google Scholar 

  • LeBreton N and Thompson A B 1988 Fluid-absent (dehydration) melting of biotite in metapelites in the early stage of crustal anatexis;Contrib. Mineral. Petrol.,99 226–237

    Article  Google Scholar 

  • Ledru P and 13 others 2000 Anatomy of the Velay Massif (French Massif Central): A case history of conditions of melt generation and granite emplacement at the end of an orogeny;Tectonophysics,342 000–000

    Google Scholar 

  • LeFort P 1986 Metamorphism and magmatism during the Himalayan collision. In:Collision Tectonics (eds.) M P Coward and A C Ries. Geol. Soc. Spec. Publ.,19 159–172

  • Leitch A M and Weinberg R F 2000 Mesoscale pervasive flow model for granite magma migration; European Geophysical Society, 25th general assembly Geophysical Research Abstracts 2 (2000) CD-ROM

  • Leloup P H, Ricard Y, Battaglia J and Lacassin R 1999 Shear heating and continental strike-slip shear zones: model and field examples;Geophys. J. Int.,136 19–40

    Article  Google Scholar 

  • Luais B and Hawkesworth C J 1994. The generation of continental crust: An integrated study of crust-forming processes in the Archean of Zimbabwe;J. Petrol.,35 43–93

    Google Scholar 

  • Marchildon N and Brown M 2001 Melt segregation in late-tectonic anatectic migmatites: an example from the Onawa contact aureole, Maine, U.S.A;Phys. Chem. of the Earth,26 225–229

    Article  Google Scholar 

  • McCaffrey K J W and Petford N 1997 Are granitic intrusions scale invariant?;J. Geol. Soc., London,154, 1–4

    Google Scholar 

  • McLellan E L 1989 Sequential formation of sub-solidus and anatectic migmatites in response to thermal evolution, eastern Scotland;J. Geol.,97 165–182

    Article  Google Scholar 

  • Miller R B and Paterson S R 1999 In defense of magmatic diapirs;J. Struct. Geol.,21 1161–1173

    Article  Google Scholar 

  • Miller S A and Nur A 2000 Permeability as a toggle switch in fluid-controlled crustal processes;Earth and Planet. Sci. Let.,56, 75–96

    Google Scholar 

  • Milord I, Sawyer E W and Brown M 2000 Formation of diatexite migmatites and granite magma during anatexis of metasedimentary rocks: An example from St. Malo, France;J. Petrol.,42 487–505

    Article  Google Scholar 

  • Mogk D W 1990 A model for the granulite-migmatite association in the Archean basement of southwestern Montana. In:Granulites and crustal evolution (eds.) D Vielzeuf and Ph. Vidal, The Netherlands: Kluwer Academic Publishers, pp. 133–55

    Google Scholar 

  • Mogk D W 1992 Ductile shearing and migmatization at mid-crustal level in an Archean high-grade gneiss belt, northern Gallatin Range, Montana, USA;J. metamorphic Geol.,10 427–438

    Article  Google Scholar 

  • Molnar P and England P 1990 Temperatures, heat flux, and frictional stress near major thrust faults;J. Geophys. Res.,95 4833–4856

    Google Scholar 

  • Nabelek P I and Liu M 1999 Leucogranites in the Black Hills of South Dakota: The consequence of shear heating during continental collision;Geology,27 523–526

    Article  Google Scholar 

  • Nelson K D and 27 others 1996 Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results.Science,174 1,684–1,688

    Google Scholar 

  • Nyman M W, Pattison DRM and Ghent E D 1995 Melt extraction during formation of K-feldspar + sillimanite migmatites, west of Revelstoke, British Columbia;J. Petrol. 36 351–372

    Google Scholar 

  • Ord A and Hobbs B E 1989 Strength of the continental crust, detachment zones and the development of plastic instabilities;Tectonophysics,158 269–289

    Article  Google Scholar 

  • Park Y and Means W D 1996 Direct observation of deformation processes in crystal mushes;J. Struct. Geol.,18 847–858

    Article  Google Scholar 

  • Partzsch G M, Schilling F R and Arndt J 2000 The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations;Tectonophysics,317 189–203

    Article  Google Scholar 

  • Paterson M S 2001 A granular flow theory for the deformation of partially-molten rock;Tectonophysics,335 51–61

    Article  Google Scholar 

  • Paterson S R and Fowler T K, Jr. 1993 Re-examining pluton emplacement processes;J. Struct. Geol.,15 191–206

    Article  Google Scholar 

  • Paterson S R and Schmidt K L 1999 Is there a spatial relationship between faults and plutons?J. Struct. Geol.,21 1131–1142

    Article  Google Scholar 

  • Paterson S R and Vernon R H 1995 Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes;Geol. Soc. Amer. Bull.,107 1356–1380

    Article  Google Scholar 

  • Paterson S R, Fowler T K, Jr. and Miller R B 1996 Pluton emplacement in arcs: A crustal-scale exchange process;Trans. R. Soc. Edinburgh: Earth Sci.,87 115–123

    Google Scholar 

  • Patiño Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?Understanding Granites. Integrating new and classical techniques (eds. A Castro, C Fernandez and J L Vigneresse). Geol. Soc. Spec. Pub.,158 55–75

  • Patiño Douce A E and Harris N 1998 Experimental constraints on Himalayan anatexis;J. Petrol.,39 689–710

    Article  Google Scholar 

  • Petford N and Koenders M A 1998a Granular flow and viscous fluctuations in low Bagnold number granitic magmas;J. Geol. Soc., London,155 873–881

    Google Scholar 

  • Petford N and Koenders M A 1998b Self-organisation and fracture connectivity in rapidly heated continental crust;J. Struct. Geol.,20 1425–1434

    Article  Google Scholar 

  • Petford N, Cruden A R, McCaffrey K J W and Vigneresse J L 2000 Granite magma formation, transport and emplacement in the Earth’s crust;Nature,408 669–673

    Article  Google Scholar 

  • Petö P 1976 An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O—Na2O—SiO2—H2O to 15 kbar total pressure;Progress in Experimental Petrology, NERC, London,3 41–45

    Google Scholar 

  • Pitcher W S 1993The nature and origin of granite. Blackie A. and P., An imprint of Chapman & Hall

  • Powell R and Downes J 1990 Garnet porphyroblast-bearing leucosomes in metapelites: Mechanisms, phase diagrams, and an example from Broken Hill, Australia, In:High-temperature metamorphism and crustal anatexis (eds.) J R Ashworth and M Brown The Mineralogical Society Series: 2. Unwin Hyman, London, pp. 105–123

    Google Scholar 

  • Pressley R A and Brown M 1999 The Phillips Pluton, Maine, USA: Evidence of heterogeneous crustal sources, and implications for granite ascent and emplacement mechanisms in convergent orogens;Lithos,46 335–366

    Article  Google Scholar 

  • Raith M, Karmakar S and Brown M 1997 Ultrahigh-temperature metamorphism and multi-stage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, Southern India;J. metamorphic Geol. 15 379–399

    Article  Google Scholar 

  • Rapp R P and Watson E B 1995 Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling;J. Petrol.,36 891–931

    Google Scholar 

  • Renner J, Evans B and Hirth G 2000 On the rheologically critical melt fraction;Earth and Planet Sci. Let., 181 585–594

    Google Scholar 

  • Rosenberg C L and Handy M R 2000a Syntectonic melt pathways during simple shearing of an anatectic rock analogue (norcamphor-benzamide);J. Geophys. Res.,105 3135–3149

    Article  Google Scholar 

  • Rosenberg C L and Handy M R 2000b Melt migration during pure shear deformation of a partially molten rock analogue (norcamphor-benzamide);J. Struct. Geol.,00 000–000

    Google Scholar 

  • Rosenberg C L and Riller U 2000 Partial-melt topology in statically and dynamically recrystallized granite;Geology,28 7–10

    Article  Google Scholar 

  • Royden L H 1993 The steady-state thermal structure of eroding orogenic belts and accretionary prisms;J. Geophys. Res.,98 4,487–4,507

    Google Scholar 

  • Rudnick R L 1992 Xenoliths—Samples of the lower continental crust. In:Continental Lower Crust (eds.) D M Fountain, R Arculus and R W Kay. (New York: Elsevier Sci.), pp. 269–316

    Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: a lower crustal perspective;Rev. of Geophys.,33 267–309

    Article  Google Scholar 

  • Rudnick R L and Presper T 1990 Geochemistry of intermediate-to high-pressure granulites. In:Granulites and Crustal Evolution (eds.) D Vielzeuf and P Vidal. Kluwer Academic Publishers, The Netherlands, pp. 523–550

    Google Scholar 

  • Rushmer T 2001 Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal rheology;Tectonophysics,342 000–000

    Article  Google Scholar 

  • Rutter E H 1997 The influence of deformation on the extraction of crustal melts: A consideration of the role of meltassisted granular flow. In:Deformation-Enhanced Fluid Transport in the Earth’s Crust and Mantle (ed.) M B Holness The Mineralogical Society Series, 8 Chapman and Hall, London, pp. 82–110

    Google Scholar 

  • Sawyer E W 1994 Melt segregation in the continental crust;Geology,22 1,019–1,022

    Article  Google Scholar 

  • Sawyer E W 1996 Melt segregation and magma flow in migmatites: implications for the generation of Granite magmas;Trans. R. Soc. Edinburgh: Earth Sci.,87 85–94

    Google Scholar 

  • Sawyer E W 1998 Formation and evolution of granitic magmas during crustal reworking: the significance of diatexites;J. Petrol.,39 1147–1167

    Article  Google Scholar 

  • Sawyer E W 1999 Criteria for the recognition of partial melting;Phys. Chem. Earth, (A) 24 269–279

    Article  Google Scholar 

  • Sawyer E W 2001 Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks;J. metamorphic Geol.,19 291–309

    Article  Google Scholar 

  • Sawyer E W and Barnes S -J 1988 Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada;J. metamorphic Geol.,6 437–450

    Article  Google Scholar 

  • Schnetger B 1994 Partial melting during the evolution of the amphiboliteto granulite-facies gneisses of the Ivrea zone, northern Italy;Chem. Geol.,113 71–101

    Article  Google Scholar 

  • Scholz C H 1980 Shear heating and the state of stress on faults;J. Geophys. Res.,85 6174–6184

    Article  Google Scholar 

  • Snoke A W, Kalakay T J, Quick J E and Sinigoi S 1999 Deep-crustal shear zone as a result of mafic igneous intrusion in the lower crust, Ivrea-Verbano Zone, Southern Alps, Italy;Earth Planet. Sci. Lett.,166 31–45

    Article  Google Scholar 

  • Solar G S and Brown M 1999. The classic high-T —low-P metamorphism of west-central Maine, USA: Is it posttectonic or syn-tectonic? Evidence from porphyroblastmatrix relations;Can. Mineral.,37 289–311

    Google Scholar 

  • Solar G S and Brown M 2001a Deformation partitioning during transpression in response to Early Devonian oblique convergence, Northern Appalachian orogen, USA;J. Struct. Geol.,23 1043–1065

    Article  Google Scholar 

  • Solar G S and Brown M 2001b Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Granite in Plutons;J. Petrol.,42 789–823

    Article  Google Scholar 

  • Solar G S, Pressley R A, Brown M and Tucker R D 1998 Granite ascent in convergent orogenic belts: testing a model;Geology,26 711–714

    Article  Google Scholar 

  • Stevens G 1997 Melting, carbonic fluids and water recycling in the deep crust: An example from the Limpopo belt, South Africa;J. metamorphic Geol.,15 141–154

    Article  Google Scholar 

  • Stevens G and Van Reenen D 1992. Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa;Precambrian Res.,55 303–319

    Article  Google Scholar 

  • Tanner D C 1999 The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport;Tectonics,302 297–305

    Google Scholar 

  • Thompson A B 1996 Fertility of crustal rocks during anatexis;Trans. R. Soc. Edinburgh: Earth Sci.,87 1–10

    Google Scholar 

  • Thompson A B 1999 Some time-space relationships for crustal melting and granitic intrusion at various depths. In:Understanding Granites: Integrating New and Classical Techniques, (eds.) A Castro, C Fernåndez and J L Vigneresse Geol. Soc. Spec. Publ.168 7–25

  • Thompson A B 2001a ClockwiseP-T paths for crustal melting and H2O recycling in granite source regions and migmatite terrains;Lithos,56 33–45

    Article  Google Scholar 

  • Thompson A B 2001bP-T paths, H2O recycling, and depth of crystallization for crustal melts;Phys. Chem. of the Earth,26 231–237

    Article  Google Scholar 

  • Thompson A B, Schulmann K and Jezek J 1997 Thermal evolution and exhumation in obliquely convergent (transpressive) orogens;Tectonophysics,280 171–184

    Article  Google Scholar 

  • Thompson A B, Tracy R J 1979 Model systems for anatexis of pelitic rocks;Contrib. Mineral. Petrol.,70 429–438

    Article  Google Scholar 

  • Vanderhaeghe O 1999 Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: Control of regional deformation;Tectonophysics,312 35–55

    Article  Google Scholar 

  • Vanderhaeghe O and Teyssier C 2001 Partial melting and flow of orogens;Tectonophysics,342 000–000

    Article  Google Scholar 

  • Vanderhaeghe O, Burg J -P and Teyssier C 1999 Exhumation of migmatitic terrains in two collapsed orogens: Canadian Cordillera and French Variscides. In:Exhumation processes: Normal faulting, ductile flow and erosion (eds.) U Ring, M T Brandon, G S Lister and S D Willet Geol. Soc. Spec. Publ.154 181–204

  • Vernon R H 1999 Quartz and feldspar microstructures in metamorphic rocks;Can. Mineral.,37 513–524

    Google Scholar 

  • Vernon R H and Collins W J 1988 Igneous microstructures in migmatites;Geology,16 1,126–1,129

    Article  Google Scholar 

  • Vernon R H and Paterson S R 2000 Axial-surface leucosomes in anatectic migmatites;Tectonophysics,335 183–192

    Article  Google Scholar 

  • Vielzeuf D, Clemens J D, Pin C and Moinet E 1990 In: Granites, granulites, and crustal differentiation (eds.) D Vielzeuf and Vidal, Ph.)Granulites and Crustal Evolution. Kluwer Academic Publishers, The Netherlands, pp. 59–85

    Google Scholar 

  • Vielzeuf D, Montel J M 1994 Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships;Contrib. Mineral. Petrol.,117 375–393

    Article  Google Scholar 

  • Vielzeuf D and Vidal P 1990Granulites and crustal evolution. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • von Blanckenburg F and Davies J H 1995 Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps;Tectonics,14 120–131

    Article  Google Scholar 

  • Waters D J 1988 Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa;J. metamorphic Geol.,6 387–404

    Article  Google Scholar 

  • Watt G R, Oliver N H S and Griffin B J 2000 Evidence for reaction-induced microfracturing in granulite facies pelitic migmatites;Geology,28, 331–334

    Article  Google Scholar 

  • Weber C, Barbey P, Cuney M and Martin H 1985 Trace element behavior during migmatization. Evidence for a complex melt-residuum-fluid interaction in the St. Malo migmatitic dome (France);Contrib. Mineral. Petrol.,90 52–62

    Article  Google Scholar 

  • Weinberg R F 1999 Pervasive felsic magma migration: alternatives to diking?Lithos,41 393–410

    Article  Google Scholar 

  • Weinberg R F, Sial A N and Pessoa R R Magma flow within the Tavares pluton, NE Brazil: Compositional and thermal convection.Geol. Soc. Amer. Bull.,113 508–520

  • Williamson B J, Downes H, Thirlwall M J and Beard A 1997 Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central;Lithos,40 295–319

    Article  Google Scholar 

  • Yardley B W D and Valley J W 1997 The petrologic case for a dry lower crust;J. Geophys. Res.,102 12173–12185

    Article  Google Scholar 

  • Zeck H P 1970 An erupted migmatite from Cerro del Hoyazo, SE Spain;Contrib. Mineral. Petrol.,26 225–246

    Article  Google Scholar 

  • Zeck H P 1996 Betic-Rif orogeny: Subduction of Mesozoic Tethys under E-ward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonic;Tectonophysics,254 1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M. Orogeny, migmatites and leucogranites: A review. J Earth Syst Sci 110, 313–336 (2001). https://doi.org/10.1007/BF02702898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702898

Keywords

Navigation